We propose generalized random forests, a method for nonparametric statistical estimation based on random forests (Breiman, 2001) that can be used to fit any quantity of interest identified as the solution to a set of local moment equations. Following the literature on local maximum likelihood estimation, our method considers a weighted set of nearby training examples; however, instead of using classical kernel weighting functions that are prone to a strong curse of dimensionality, we use an adaptive weighting function derived from a forest designed to express heterogeneity in the specified quantity of interest. We propose a flexible, computationally efficient algorithm for growing generalized random forests, develop a large sample theory for our method showing that our estimates are consistent and asymptotically Gaussian, and provide an estimator for their asymptotic variance that enables valid confidence intervals. We use our approach to develop new methods for three statistical tasks: non-parametric quantile regression, conditional average partial effect estimation, and heterogeneous treatment effect estimation via instrumental variables. A software implementation, grf for R and C++, is available from CRAN. imsart-aos ver.
Broad-coverage relation extraction either requires expensive supervised training data, or suffers from drawbacks inherent to distant supervision. We present an approach for providing partial supervision to a distantly supervised relation extractor using a small number of carefully selected examples. We compare against established active learning criteria and propose a novel criterion to sample examples which are both uncertain and representative. In this way, we combine the benefits of fine-grained supervision for difficult examples with the coverage of a large distantly supervised corpus. Our approach gives a substantial increase of 3.9% endto-end F 1 on the 2013 KBP Slot Filling evaluation, yielding a net F 1 of 37.7%.
Annotation errors can significantly hurt classifier performance, yet datasets are only growing noisier with the increased use of Amazon Mechanical Turk and techniques like distant supervision that automatically generate labels. In this paper, we present a robust extension of logistic regression that incorporates the possibility of mislabelling directly into the objective. This model can be trained through nearly the same means as logistic regression, and retains its efficiency on highdimensional datasets. We conduct experiments on named entity recognition data and find that our approach can provide a significant improvement over the standard model when annotation errors are present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.