A new volatile organic compounds (VOCs) sensing concept called humidityinitiated gas (HIG) sensors is described and demonstrated. HIG sensors employ the impedance of water assembled at sensor interfaces when exposed to humidity to sense VOCs at low concentrations. Here, two HIG sensor variants are studied-Type I and Type II. Type I sensors benefit from simplicity, but are less attractive in terms of key performance metrics, including response time and detection limits. Type II sensors are more complex, but are more attractive in terms of key performance metrics. Notably, it is observed that the best-in-class Type II HIG sensors achieve <2 min response times and <10 ppb detection limit for geranyl acetone, a VOC linked to the asymptomatic form of Huanglongbing (HLB) citrus disease. Both Type I and Type II sensors are assembled from off-the-shelf materials and demonstrate remarkable stability at high humidity. HIG sensors are proposed as an attractive alternative to existing VOCs sensors for remote field detection tasks, including VOCs detection to diagnose HLB citrus disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.