1 Human 5-HT 1B (h5-HT 1B ) and human 5-HT 1D (h5-HT 1D ) receptors show remarkably similar pharmacology with few compounds discriminating the receptors. We report here on a novel compound, SB-224289 (1'-Methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro [furo [2,3-f]indole-3,4'-piperidine] oxalate), which has high a nity for h5-HT 1B receptors (pK 1 =8.16+0.06) and displays over 75 fold selectivity for the h5-HT 1B receptor over all other 5-HT receptors including the h5-HT 1D receptor and all other receptors tested thus far. 2 Functional activity of SB-224289 was measured in a [ 35 S]GTPgS binding assay on recombinant h5-HT 1B and h5-HT 1D receptors expressed in Chinese Hamster Ovary (CHO) cells. SB-224289 displayed negative intrinsic activity at both receptors with higher potency at h5-HT 1B receptors. SB-224289 caused a rightward shift of agonist concentration response curves consistent with competitive antagonism and generated a nities comparable with those obtained from competition radioligand receptor binding studies. 3 SB-224289 potentiated [ 3 H]5-HT release from electrically stimulated guinea-pig cerebral cortical slices to the same extent as as the non-selective 5-HT 1 antagonist methiothepin. SB-224289 also fully reversed the inhibitory e ect of exogenously superfused 5-HT on electrically stimulated release. 4 Using SB-224289 as a tool compound, we con®rm that in guinea-pig cerebral cortex the terminal 5-HT autoreceptor is of the 5-HT 1B subtype.
It has been reported that radiolabelled agonist : antagonist binding affinity ratios can predict functional efficacy at several different receptors. This study investigates whether this prediction is true for recombinant and native tissue 5‐HT1A receptors.
Saturation studies using [3H]‐8‐OH‐DPAT and [3H]‐MPPF revealed a single, high affinity site (KD∼1 nM) in HEK293 cells expressing human 5‐HT1A receptors and rat cortex. In recombinant cells, [3H]‐MPPF labelled 3–4 fold more sites than [3H]‐8‐OH‐DPAT suggesting the presence of more than one affinity state of the receptor. [3H]‐Spiperone labelled a single, lower affinity site in HEK293 cells expressing h5‐HT1A receptors but did not bind to native tissue 5‐HT1A receptors. These data suggest that, in transfected HEK293 cells, human 5‐HT1A receptors exist in different affinity states but in native rat cortical tissue the majority of receptors appear to exist in the high agonist affinity state.
Receptor agonists inhibited [3H]‐MPPF binding from recombinant 5‐HT1A receptors in a biphasic manner, whereas antagonists and partial agonists gave monophasic inhibition curves. All compounds displaced [3H]‐8‐OH‐DPAT and [3H]‐spiperone binding in a monophasic manner. In rat cortex, all compounds displaced [3H]‐MPPF and [3H]‐8‐OH‐DPAT in a monophasic manner.
Functional evaluation of compounds, using [35S]‐GTPγS binding, produced a range of intrinsic activities from full agonism, displayed by 5‐HT and 5‐CT to inverse agonism displayed by spiperone.
[3H]‐8‐OH‐DPAT : [3H]‐MPPF pKi difference correlated well with functional intrinsic activity (r=0.86) as did [3H]‐8‐OH‐DPAT : [3H]‐spiperone pKi difference with functional intrinsic activity (r=0.96).
Thus agonist : antagonist binding affinity differences may be used to predict functional efficacy at human 5‐HT1A receptors expressed in HEK293 cells where both high and low agonist affinity states are present but not at native rat cortical 5‐HT1A receptors in which only the high agonist affinity state was detectable.
British Journal of Pharmacology (2000) 130, 1108–1114; doi:10.1038/sj.bjp.0703394
5-HT1 receptors are members of the G-protein-coupled receptor superfamily and are negatively linked to adenylyl cyclase activity. The human 5-HT1B and 5-HT1D receptors (previously known as 5-HT1Dbeta and 5-HT1Dalpha, respectively), although encoded by two distinct genes, are structurally very similar. Pharmacologically, these two receptors have been differentiated using nonselective chemical tools such as ketanserin and ritanserin, but the absence of truly selective agents has meant that the precise function of the 5-HT1B and 5-HT1D receptors has not been defined. In this paper we describe how, using computational chemistry models as a guide, the nonselective 5-HT1B/5-HT1D receptor antagonist 4 was structurally modified to produce the selective 5-HT1B receptor inverse agonist 5, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2, 4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6, 7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperidine] (SB-224289). This compound is a potent antagonist of terminal 5-HT autoreceptor function both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.