PurposeWe assessed automated contouring of normal structures for patients with head-and-neck cancer (HNC) using a multiatlas deformable-image-registration algorithm to better provide a fully automated radiation treatment planning solution for low- and middle-income countries, provide quantitative analysis, and determine acceptability worldwide.MethodsAutocontours of eight normal structures (brain, brainstem, cochleae, eyes, lungs, mandible, parotid glands, and spinal cord) from 128 patients with HNC were retrospectively scored by a dedicated HNC radiation oncologist. Contours from a 10-patient subset were evaluated by five additional radiation oncologists from international partner institutions, and interphysician variability was assessed. Quantitative agreement of autocontours with independently physician-drawn structures was assessed using the Dice similarity coefficient and mean surface and Hausdorff distances. Automated contouring was then implemented clinically and has been used for 166 patients, and contours were quantitatively compared with the physician-edited autocontours using the same metrics.ResultsRetrospectively, 87% of normal structure contours were rated as acceptable for use in dose-volume-histogram–based planning without edit. Upon clinical implementation, 50% of contours were not edited for use in treatment planning. The mean (± standard deviation) Dice similarity coefficient of autocontours compared with physician-edited autocontours for parotid glands (0.92 ± 0.10), brainstem (0.95 ± 0.09), and spinal cord (0.92 ± 0.12) indicate that only minor edits were performed. The average mean surface and Hausdorff distances for all structures were less than 0.15 mm and 1.8 mm, respectively.ConclusionAutomated contouring of normal structures generates reliable contours that require only minimal editing, as judged by retrospective ratings from multiple international centers and clinical integration. Autocontours are acceptable for treatment planning with no or, at most, minor edits, suggesting that automated contouring is feasible for clinical use and in the ongoing development of automated radiation treatment planning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.