Here we investigated whether changes in neurogenesis and BDNF expression are possible mechanisms involved in the depression-like symptom during the withdrawal/abstinence period after chronic binge-pattern alcohol consumption given the limited number of studies addressing the link between these factors in the adolescent brain. Forty-seven male Sprague-Dawley rats were used in the study and the experimental protocol started when rats were 25-days old. Rats were assigned to either: (a) ethanol or (b) control group. Animals in each group were further randomized to receive either: brain-derived neurotrophic factor (BDNF) receptor agonist or vehicle. Rats were trained to self-administer ethanol and the binge protocol consisted of daily 30-min experimental sessions 4 hours into the dark period for 12 days. Two days after the last drinking session, rats were tested in the sucrose preference test to evaluate anhedonia and the open field test after habituation to evaluate behavioral despair. Our data showed that: (1) self-administration of alcohol in a binge-like pattern causes inebriation as defined by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and this pattern of alcohol exposure is associated with the development of depression-like symptom; (2) no significant difference in blood alcohol levels between the 2 ethanol groups; and (3) chronic binge drinking resulted in the development of depressive phenotype, decrease survival and neuronal differentiation of neural progenitor cells in the hippocampus, and decrease BDNF effect during the withdrawal period. But the most important finding in our study is that augmenting BDNF actions through the use of tyrosine kinase receptor B (TrkB, a BDNF receptor) agonist restored neurogenesis and abolished the alcohol-induced anhedonia and despair behaviors seen during the withdrawal/abstinence period. Our results suggest that BDNF might be a molecule that can be targeted for interventions in alcoholism–depression co-incidence.
BackgroundIn this study, we examined the effects of cyclophosphamide, methothrexate, and 5-Fluorouracil (CMF) drug combination on various aspects of learning and memory. We also examined the effects of CMF on cell proliferation and chromatin remodeling as possible underlying mechanisms to explain chemotherapy-associated cognitive dysfunction. Twenty-four adult female Wistar rats were included in the study and had minimitter implantation for continuous activity monitoring two weeks before the chemotherapy regimen was started. Once baseline activity data were collected, rats were randomly assigned to receive either CMF or saline injections given intraperitoneally. Treatments were given once a week for a total of 4 weeks. Two weeks after the last injection, rats were tested in the water maze for spatial learning and memory ability as well as discrimination learning. Bromodeoxyuridine (BrdU) injection was given at 100 mg/Kg intraperitoneally 4 hours prior to euthanasia to determine hippocampal cell proliferation while histone acetylation and histone deacetylase activity was measured to determine CMF effects on chromatin remodeling.ResultsOur data showed learning and memory impairment following CMF administration independent of the drug effects on physical activity. In addition, CMF-treated rats showed decreased hippocampal cell proliferation, associated with increased histone acetylation and decreased histone deacetylase activity.ConclusionsThese results suggest the negative consequences of chemotherapy on brain function and that anti-cancer drugs can adversely affect the self-renewal potential of neural progenitor cells and also chromatin remodeling in the hippocampus. The significance of our findings lie on the possible usefulness of animal models in addressing the clinical phenomenon of 'chemobrain.'
Cognitive impairment is commonly reported as a consequence of chemotherapy and can have considerable impact on everyday life on cancer patients. Thus, it is imperative to have a clear understanding of this phenomenon and the underlying mechanism involved. In the present study we examined the role of neuroinflammation and myelination in chemotherapy-related cognitive impairment. Female Sprague-Dawley rats (12-months old) were used in the study (total n=52, 13rats/group). Rats were randomly assigned to either the chemotherapy or saline control group. The drug combination of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) was given i.p. once a week for 4 weeks. Rats in the control group received normal saline of equal volume. Animals from each group were further randomized to receive either: cyclooxygenase (COX-2) inhibitor, NS-393, to block the inflammatory response or vehicle. NS-398 was given at 10 mg/Kg i.p. and equal volume of saline (vehicle) was injected i.p. as vehicle. Both NS-398 and vehicle were injected one hour after the first CMF dose and then given daily for 28 days then rats were tested in the Y maze. Our data showed that: (1) CMF led to the increase in the levels of inflammatory mediators IL-1β, TNF-α, and COX-2 while levels of the anti-inflammatory cytokine IL-10 decreased; (2) cognitive impairment and neuroinflammation resulting from CMF persisted 4 weeks after the treatment ended; and (3) administration of NS-398 attenuated CMF-induced neuroinflammation and effects on myelin and cognitive impairment. These findings suggest the involvement of neuroinflammation in CMF-induced changes in myelin and myelination, and cognitive impairment.
BackgroundPersistent neuroinflammation and disruptions in brain energy metabolism is commonly seen in traumatic brain injury (TBI). Because of the lack of success of most TBI interventions and the documented benefits of environmental enrichment (EE) in enhancing brain plasticity, here we focused our study on use of EE in regulating injury-induced neuroinflammation and disruptions in energy metabolism in the prefrontal cortex and hippocampus. Adult male Wistar rats were used in the study and randomly assigned to receive either: mild TBI (mTBI) using the controlled cortical injury model or sham surgery. Following surgery, rats from each group were further randomized to either: EE housing or standard laboratory housing (CON). After 4 weeks of recovery, cognitive testing was performed using the non-matching-to-sample and delayed non-matching-to-sample tasks. After completion of behavioral testing, levels of the pro-inflammatory cytokines IL-1β and TNF-α and the anti-inflammatory cytokine IL-10 were measured. In addition, levels of AMPK (adenosine monophosphate-activated protein kinase), phosphorylated AMPK and uMtCK (ubiquitous mitochondrial creatine kinase) were assessed as measures of brain energy homeostasis.ResultsOur results showed that EE: (1) decreased the pro-inflammatory cytokines IL-1β and TNF-α and enhanced levels of the anti-inflammatory cytokine IL-10 after mTBI; (2) mitigated mTBI-induced cognitive impairment; and (3) attenuated mTBI-induced downregulation in pAMPK/AMPK ratio and uMtCK levels.ConclusionsOur data demonstrated the potential of EE to modulate the persistent: (1) neuroinflammatory response seen following mTBI, and (2) persistent disturbance in brain energy homeostasis. It is possible that through the mechanism of modulating neuroinflammation, EE housing was able to restore the disruption in energy metabolism and enhanced functional recovery after mTBI.
In this study, we examined whether enriched environment (EE) housing has direct neuroprotective effects on oxidative damage following transient global cerebral ischemia. Fifty-two adult male Wistar rats were included in the study and received either ischemia or sham surgery. Once fully awake, rats in each group were randomly assigned to either: EE housing or socially paired housing (CON). Animals remained in their assigned environment for 7 days, and then were killed. Our data showed that glutamate receptor expression was significantly higher in the hippocampus of the ischemia CON group than in the ischemia EE group. Furthermore, the oxidative DNA damage, protein oxidation, and neurodegeneration in the hippocampus of the ischemia CON group were significantly increased compared to the ischemia EE group. These results suggest that EE housing possibly modulated the ischemia-induced glutamate excitotoxicity, which then attenuated the oxidative damage and neurodegeneration in the ischemia EE rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.