The “cancerized field” concept posits that cells in a given tissue share an oncogenic mutation or insult and are thus cancer-prone, yet only discreet clones within the field initiate tumors. Nearly all benign nevi carry oncogenic BRAFV600E mutations, but they only rarely become melanoma. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCP’s) and is specifically re-expressed in melanoma. We show by live imaging of transgenic zebrafish crestin reporters that, within a cancerized field (BRAFV600E-mutant; p53-deficient), a single melanocyte reactivates the NCP state, and this establishes that a fate change occurs at melanoma initiation in this model. We show the crestin element is regulated by NCP transcription factors, including sox10. Forced sox10 overexpression in melanocytes accelerated melanoma formation, consistent with activation of a NCP gene signature and super-enhancers leading to melanoma. Our work highlights the importance of NCP state reemergence as a key event in melanoma initiation.
Summary
CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish it allows the rapid generation of knock-out lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knock-out and greatly broadens the scope of loss-of-function studies in zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.