Food production and waste management are two increasing issues ensuing from the growing world population. Recycling organic residues into amendment for food production seems to appear as an opportunity to partially solve this double challenge. Vermicomposting is a process whereby earthworms transform organic residues into compost that can be used as a substrate for plant growth. Many studies have evaluated the effect of vermicompost on plant growth, but a quantitative summary of these studies is still missing. This is the first meta-analysis providing a quantitative summary of the effect size of vermicompost on plant growth. We found that vermicompost brought about average increases of 26% in commercial yield, 13% in total biomass, 78% in shoot biomass, and 57% in root biomass. The positive effect of vermicompost on plant growth reached a maximum when vermicompost represented 30 to 50% of the soil volume. The best original material to be used for vermicompost production was cattle manure. The effect was stronger when no fertilizer was added, and lower when the standard Metro-Mix 360 substratum recommended by some authors was used as a growing medium in greenhouse or climatic chambers. Herbs (especially Cucurbitaceae and Asteraceae) and legumes exhibited the largest biomass increase in the presence of vermicompost. These results are discussed through an analysis of potential publication biases showing an over-representation of studies with a high effect size. We finally recommend authors of primary research to provide a minimum set of statistical parameters, output variables, and experimental condition parameters to make it easier to include their work in meta-analyses. Overall, our study provides synthetic information on the beneficial effects of vermicompost for plant growth, which could help bring waste management and agriculture together towards a society with a more circular economy.
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm‐sensitive species had a high height‐dbh ratio, low wood density and high maximum growth, while fire‐sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.
In temperate Europe, oak-dominated forests are widespread, supporting high biodiversity and providing important ecosystem services. Insufficient natural regeneration has, however, been a concern for over a century. The objective of this study was to gain insights into differences in regeneration success using artificial and natural regeneration techniques for reforestation of oak (Quercus robur L.) stands. We monitored seedlings following planting, direct seeding and natural regeneration over five years in a randomized block experiment in southern Sweden with fenced and non-fenced plots. Fencing had a strong positive effect on height growth, especially for planted seedlings that were taller than the other seedlings and more frequently browsed in non-fenced plots. In contrast, there was little effect of fencing on survival, establishment rate and recruitment rate of seedlings. Due to aboveground damage on seedlings from voles, protection of acorns did not improve establishment rate following direct seeding. Under current circumstances at the site with a sparse shelterwood of old oaks, we conclude that natural regeneration was the most cost-efficient regeneration method. It resulted in the most seedlings at the lowest cost. However, regeneration success was heavily influenced by interference from herbaceous vegetation. With a small additional investment in vegetation control, the results might have been improved for planting and direct seeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.