Many bacterial species are social, producing costly secreted "public good" molecules that enhance the growth of neighboring cells. The genes coding for these cooperative traits are often propagated via mobile genetic elements and can be virulence factors from a biomedical perspective. Here, we present an experimental framework that links genetic information exchange and the selection of cooperative traits. Using simulations and experiments based on a synthetic bacterial system to control public good secretion and plasmid conjugation, we demonstrate that horizontal gene transfer can favor cooperation. In a well-mixed environment, horizontal transfer brings a direct infectious advantage to any gene, regardless of its cooperation properties. However, in a structured population transfer selects specifically for cooperation by increasing the assortment among cooperative alleles. Conjugation allows cooperative alleles to overcome rarity thresholds and invade bacterial populations structured purely by stochastic dilution effects. Our results provide an explanation for the prevalence of cooperative genes on mobile elements, and suggest a previously unidentified benefit of horizontal gene transfer for bacteria.bacterial cooperation | social evolution | plasmid transfer | gene mobility
Market policies have profound implications for consumers as well as for the management of resources. One of the major concerns in fish trading is species mislabelling: the commercial name used does not correspond to the product, most often because the product is in fact a cheaper or a more easily available species. Substitution rates depend heavily on species, some often being sold mislabelled while others rarely or never mislabelled. Rates also vary largely depending on countries. In this study, we analyse the first market-wide dataset collected for France, the largest sea food market in Europe, for fish species substitution. We sequenced and analysed 371 samples bearing 55 commercial species names, collected in fishmonger shops, supermarkets and restaurants; the largest dataset assembled to date in an European country. Sampling included fish fillets, both fresh and frozen, and prepared meals. We found a total of 14 cases of mislabelling in five species: bluefin tuna, cod, yellowfin tuna, sole and seabream, setting the overall substitution rate at 3.7% CI [2.2–6.4], one of the lowest observed for comparable surveys with large sampling. We detected no case of species mislabelling among the frozen fillets or in industrially prepared meals, and all the substitutions were observed in products sold in fishmongers shops or restaurants. The rate of mislabelling does not differ between species, except for bluefin tuna. Despite a very small sample size (n = 6), the rate observed for this species (83.3% CI [36–99]) stands in sharp contrast with the low substitution rate observed for the other substituted species. In agreement with studies from other countries, this work shows that fish mislabelling can vary greatly within a country depending on the species. It further suggests that more efforts should be directed to the control of high value species like bluefin tuna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.