The initiation of DNA synthesis is governed by the licensing of replication origins, which consists of assembling a pre-replication complex (pre-RC) on origins during late M- and G1-phases. In metazoans, functional replication origins do not show defined DNA consensus sequences, thus evoking the involvement of chromatin determinants in the selection of these origins. Here, we show that the onset of licensing in mammalian cells coincides with an increase in histone H4 Lys 20 monomethylation (H4K20me1) at replication origins by the methyltransferase PR-Set7 (also known as Set8 or KMT5A). Indeed, tethering PR-Set7 methylase activity to a specific genomic locus promotes the loading of pre-RC proteins on chromatin. In addition, we demonstrate that PR-Set7 undergoes a PCNA- and Cul4-Ddb1-driven degradation during S phase that contributes to the disappearance of H4K20me1 at origins and the inhibition of replication licensing. Strikingly, expression of a PR-Set7 mutant insensitive to this degradation causes the maintenance of H4K20me1 and repeated DNA replication at origins. These results elucidate a critical role for PR-Set7 and H4K20me1 in the chromatin events that regulate replication origins.
Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in , partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin, but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.