Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (10 −13 m/ √ Hz) AFM to investigate the mechanical behavior of a SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT and its mechanical behavior is provided.
Mechanical response of carbon nanotube atomic force microscope probes are investigated using a thermal noise forcing. Thermal noise spectra are able to investigate mechanical behaviors that cannot be studied using classical atomic force microscope modes. Experimental results show that the carbon nanotube contacts can be classified in two categories: the free sliding and pinned cases. The pinned contact case requires the description of the cantilever flexural vibrations with support spring-coupled cantilever boundary conditions. Our experimental results show that carbon nanotubes exhibit different contact behaviors with a surface, and in turn different mechanical responses.
International audienceThe interaction between a Carbon nanotube (CNT) and a Graphene sheet is investigated to describe the contact properties between a CNT Atomic Force Microscope (AFM) tip and a graphite surface. The energy of the whole system is calculated using MM+ molecular mechanical modeling. With the numerical calculations, one explores the sliding motion of the CNT on the graphene sheet either at the CNT apex or with a given CNT length contacting the surface. The aim is to mimic the AFM CNT tip scanning a graphite surface.To do, so we calculate the energy barriers the tips has to overcome to achieve a full translation. The results show that the barrier heights markedly depend on the contact length between the CNT and the graphene, but show a weak dependence, if any, on the CNT tube diameter
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.