Magnetized laser-produced plasmas are central to many studies in laboratory astrophysics, in inertial confinement fusion, and in industrial applications. Here, we present the results of large-scale three-dimensional magnetohydrodynamic simulations of the dynamics of a laser-produced plasma expanding into a transverse magnetic field with a strength of tens of teslas. The simulations show the plasma being confined by the strong magnetic field into a slender slab structured by the magnetized Rayleigh–Taylor instability that develops at the plasma–vacuum interface. We find that when the initial velocity of the plume is perturbed, the slab can develop kink-like motions that disrupt its propagation.
Magnetized laser-produced plasmas are central to many new studies in laboratory astrophysics, inertial confinement fusion, and in industrial applications. Here we present the results of large-scale, three-dimensional magneto-hydrodynamic simulations of the dynamics of a laser-produced plasma expanding into a transverse magnetic field with strength of tens of Tesla. The simulations show the plasma being confined by the strong magnetic field into a slender slab structured by the magnetized Rayleigh-Taylor instability that develops at the plasma-vacuum interface. We find that by perturbing the initial velocity of the plume the slab can develops kink-like motion which disrupt its propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.