Close study of 3-hydroxybutyrate uptake by brain suggests that its metabolism is limited by permeability. Furthermore, the permeability characteristics vary from region to region; areas known to have no blood-brain barrier show the highest rate of utilization. The results imply that rather than substitute fuels, ketone bodies should be considered supplements which partially supply specific areas but are incapable of supporting the entire energy requirement of all brain regions.
The influx of phenylalanine, tryptophan, leucine, and lysine across the blood-brain barrier of individual brain structures was studied in rats 7--8 weeks after a portacaval shunt or sham operation. The method involved a brief infusion of labeled amino acid in tracer quantity and quantitative autoradiography. The clearance rates of phenylalanine, tryptophan, and leucine were increased in proportion to each other in every region examined, but not by the same factor. Tryptophan clearance increased the most (about 200%) and leucine the least (about 30%), compared with phenylalanine (about 80%). This was unexpected, as all three amino acids are believed to be transported by the same mechanism. The changes were most marked in several limbic structures and the reticular formation, whereas the hypothalamus was least affected. Plasma clearance of lysine was decreased in all areas by about 70%. Since the circulating lysine concentration was decreased by 13%, the actual rate of lysine influx was even more reduced. The results demonstrate specific alterations in two different amino acid transport systems. The resulting excess brain neutral amino acids, some of which are neurotransmitter precursors, as well as reduced basic amino acid availability, may be of etiological significance in heptic encephalopathy.
Abstract—
During acute hepatic coma following two‐stage hepatic devascularization in the rat, profound changes occurred in plasma and whole‐brain amino acids and putative neurotransmitters. Brain ammonia, glutamine and GABA were increased, aspartate was decreased, while glutamate was unchanged. An increase in brain tryptophan was accompanied by a similar increase in plasma unbound tryptophan but decreased plasma total tryptophan. These changes occurred in the presence of high plasma levels of the other neutral amino acids, including the branched chain amino acids. Plasma insulin was unchanged while glucagon levels rose, resulting in a decreased insulin to glucagon ratio. These results suggest that while plasma unbound tryptophan may influence brain tryptophan levels, altered plasma concentrations of neutral amino acids which compete with tryptophan for transport into the brain do not contribute to the increase in brain tryptophan observed during acute hepatic coma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.