This contribution presents a novel method to extract skin physical parameters as geometry, colour and gloss with photometric stereo. Our method is based on QNN (Quaternion Neural Network) to estimate the surface geometry from images with a fixed viewpoint modifying surface illumination, i.e. photometric stereo. To that end, we assume that surface BRDF (Bidirectional Reflectance Distribution Function) can be separated by a diffuse and specular component. Once the geometry is estimated, colour is estimated from geometry to finally compute gloss. This method results on multiple gloss maps which are used to compute features that characterise surface gloss. Unlike other approaches, our method does not require polarising filters that suffer from a more complex light modelling. We demonstrate the effectiveness of our approach through experiments on rendering, cow leather and ex-vivo skin samples. The proposed method has potential for various real-world applications such as evaluating the appearance of skin care products or assessing skin health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.