Research on innate immunity of the penaeid shrimps and the oyster Crassostrea gigas is motivated greatly by economical necessities. Indeed, the aquaculture of these organisms is now limited by the development of infectious diseases. Studying anti-microbial peptides/proteins (AMPs), which are effector molecules of the host defense, is particularly attractive not only for progressing basic knowledge on immunity but also because they offer various possible applications for disease management in aquaculture. AMPs are explored with a global approach,considering their structure, properties, function, gene expression, and tissue distribution during the response to infections. In shrimp, investigations of the penaeidins, which are constitutively expressed peptides, have highlighted the importance of hemocytes and hematopoiesis as major elements of the immune response, providing both local and systemic reactions. The activation of hematopoiesis must be regarded as a regulatory way for the expression and distribution of constitutively expressed immune effectors. As complementary approaches, genomics and gene profiling are promising to deepen our understanding of the anti-microbial defense of the oyster and the shrimp. However, real progress will depend also on the characterization of hemocyte lineages and hematopoiesis of these marine invertebrates as well as on the ontogenesis of their immune systems.
Keratinocyte differentiation program leading to an organized epidermis plays a key role in maintaining the first line of defense of the skin. Epidermal integrity is regulated by a tight communication between keratinocytes and leucocytes, particularly under cytokine control. Imbalance of the cytokine network leads to inflammatory diseases such as psoriasis. Our attempt to model skin inflammation showed that the combination of IL-17A, IL-22, IL-1α, OSM and TNFα (Mix M5) synergistically increases chemokine and antimicrobial-peptide expression, recapitulating some features of psoriasis. Other characteristics of psoriasis are acanthosis and down-regulation of keratinocyte differentiation markers. Our aim was to characterize the specific roles of these cytokines on keratinocyte differentiation, and to compare with psoriatic lesion features. All cytokines decrease keratinocyte differentiation markers, but IL-22 and OSM were the most powerful, and the M5 strongly synergized the effects. In addition, IL-22 and OSM induced epidermal hyperplasia in vitro and M5 induced epidermal thickening and decreased differentiation marker expression in a mouse model, as observed in human psoriatic skin lesions. This study highlights the precise role of cytokines in the skin inflammatory response. IL-22 and OSM more specifically drive epidermal hyperplasia and differentiation loss while IL-1α, IL-17A and TNFα were more involved in the activation of innate immunity.
Antimicrobial peptides play a major role in innate immunity. The penaeidins, initially characterized from the shrimp Litopenaeus vannamei, are a family of antimicrobial peptides that appear to be expressed in all penaeid shrimps. As of recent, a large number of penaeid nucleotide sequences have been identified from a variety of penaeid shrimp species and these sequences currently reside in several databases under unique identifiers with no nomenclatural continuity. To facilitate research in this field and avoid potential confusion due to a diverse number of nomenclatural designations, we have made a systematic effort to collect, analyse, and classify all the penaeidin sequences available in every database. We have identified a common penaeidin signature and subsequently established a classification based on amino acid sequences. In order to clarify the naming process, we have introduced a 'penaeidin nomenclature' that can be applied to all extant and future penaeidins. A specialized database, PenBase, which is freely available at , has been developed for the penaeidin family of antimicrobial peptides, to provide comprehensive information about their properties, diversity and nomenclature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.