Mycoplasma pneumoniae causes community-acquired respiratory tract infections, particularly in school-aged children and young adults. These infections occur both endemically and epidemically worldwide. M. pneumoniae lacks cell wall and is subsequently resistant to beta-lactams and to all antimicrobials targeting the cell wall. This mycoplasma is intrinsically susceptible to macrolides and related antibiotics, to tetracyclines and to fluoroquinolones. Macrolides and related antibiotics are the first-line treatment of M. pneumoniae respiratory tract infections mainly because of their low MIC against the bacteria, their low toxicity and the absence of contraindication in young children. The newer macrolides are now the preferred agents with a 7-to-14 day course of oral clarithromycin or a 5-day course of oral azithromycin for treatment of community-acquired pneumonia due to M. pneumoniae, according to the different guidelines worldwide. However, macrolide resistance has been spreading for 15 years worldwide, with prevalence now ranging between 0 and 15% in Europe and the USA, approximately 30% in Israel and up to 90–100% in Asia. This resistance is associated with point mutations in the peptidyl-transferase loop of the 23S rRNA and leads to high-level resistance to macrolides. Macrolide resistance-associated mutations can be detected using several molecular methods applicable directly from respiratory specimens. Because this resistance has clinical outcomes such as longer duration of fever, cough and hospital stay, alternative antibiotic treatment can be required, including tetracyclines such as doxycycline and minocycline or fluoroquinolones, primarily levofloxacin, during 7–14 days, even though fluoroquinolones and tetracyclines are contraindicated in all children and in children < 8 year-old, respectively. Acquired resistance to tetracyclines and fluoroquinolones has never been reported in M. pneumoniae clinical isolates but reduced susceptibility was reported in in vitro selected mutants. This article focuses on M. pneumoniae antibiotic susceptibility and on the development and the evolution of acquired resistance. Molecular detection of resistant mutants and therapeutic options in case of macrolide resistance will also be assessed.
Clostridium difficile causes antibiotic-associated diarrhoea and pseudomembranous colitis. The main virulence factors of C. difficile are the toxins A (TcdA) and B (TcdB). A third toxin, called binary toxin (CDT), can be detected in 17% to 23% of strains, but its role in human disease has not been clearly defined. We report six independent cases of patients with diarrhoea suspected of having C. difficile infection due to strains from toxinotype XI/PCR ribotype 033 or 033-like, an unusual toxinotype/PCR ribotype positive for CDT but negative for TcdA and TcdB. Four patients were considered truly infected by clinicians and were specifically treated with oral metronidazole. One of the cases was identified during a prevalence study of A−B−CDT+ strains. In this study, we screened a French collection of 220 nontoxigenic strains and found only one (0.5%) toxinotype XI/PCR ribotype 033 or 033-like strain. The description of such strains raises the question of the role of binary toxin as a virulence factor and could have implications for laboratory diagnostics that currently rarely include testing for binary toxin.
In a prospective, nationwide study in France of Escherichia coli responsible for pneumonia in patients receiving mechanical ventilation, we determined E. coli antimicrobial susceptibility, phylotype, O-type, and virulence factor gene content. We compared 260 isolates with those of 2 published collections containing commensal and bacteremia isolates. The preponderant phylogenetic group was B2 (59.6%), and the predominant sequence type complex (STc) was STc73. STc127 and STc141 were overrepresented and STc95 underrepresented in pneumonia isolates compared with bacteremia isolates. Pneumonia isolates carried higher proportions of virulence genes sfa/foc, papGIII, hlyC, cnf1, and iroN compared with bacteremia isolates. Virulence factor gene content and antimicrobial drug resistance were higher in pneumonia than in commensal isolates. Genomic and phylogenetic characteristics of E. coli pneumonia isolates from critically ill patients indicate that they belong to the extraintestinal pathogenic E. coli pathovar but have distinguishable lung-specific traits.
Diagnosing infections involving this species by routine methods is difficult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.