Although non-invasive techniques provide functional activation maps at ever-growing spatio-temporal precision, invasive recordings offer a unique opportunity for direct investigations of the fine-scale properties of neural mechanisms in focal neuronal populations. In this review we provide an overview of the field of intracranial Electroencephalography (iEEG) and discuss its strengths and limitations and its relationship to non-invasive brain mapping techniques. We discuss the characteristics of invasive data acquired from implanted epilepsy patients using stereotactic-electroencephalography (SEEG) and electrocorticography (ECoG) and the use of spectral analysis to reveal task-related modulations in multiple frequency components. Increasing evidence suggests that gamma-band activity (>40 Hz) might be a particularly efficient index for functional mapping. Moreover, the detection of high gamma activity may play a crucial role in bridging the gap between electrophysiology and functional imaging studies as well as in linking animal and human data. The present review also describes recent advances in real-time invasive detection of oscillatory modulations (including gamma activity) in humans. Furthermore, the implications of intracerebral findings on future non-invasive studies are discussed.
Task performance is associated with increased brain metabolism but also with prominent deactivation in specific brain structures known as the default-mode network (DMN). The role of DMN deactivation remains enigmatic in part because its electrophysiological correlates, temporal dynamics, and link to behavior are poorly understood. Using extensive depth electrode recordings in humans, we provide first electrophysiological evidence for a direct correlation between the dynamics of power decreases in the DMN and individual subject behavior. We found that all DMN areas displayed transient suppressions of broadband gamma (60 -140 Hz) power during performance of a visual search task and, critically, we show for the first time that the millisecond range duration and extent of the transient gamma suppressions are correlated with task complexity and subject performance. In addition, trial-by-trial correlations revealed that spatially distributed gamma power increases and decreases formed distinct anticorrelated large-scale networks. Beyond unraveling the electrophysiological basis of DMN dynamics, our results suggest that, rather than indicating a mere switch to a global exteroceptive mode, DMN deactivation encodes the extent and efficiency of our engagement with the external world. Furthermore, our findings reveal a pivotal role for broadband gamma modulations in the interplay between task-positive and task-negative networks mediating efficient goal-directed behavior and facilitate our understanding of the relationship between electrophysiology and neuroimaging studies of intrinsic brain networks.
Actinide chemistry is gaining increased focus in modern research, particularly in the fields of energy research and molecular magnetism. However, the structure-function and structure-property relationships of actinides have still not been studied as intensely as those for transition metals. In this work, we report a detailed ab initio study of the spectroscopic, magnetic, and bonding properties of the trivalent actinide free ions and their associated hexachloride complexes in octahedral symmetry. The electronic structures of these systems are examined using complete active-space self-consistent-field calculations followed by second-order N-electron valence perturbation theory, including both scalar relativistic and spin-orbit-coupling effects. The computed energies and wave functions are further analyzed by means of ab initio ligand-field theory (AILFT) and finally chemically interpreted by means of the angular overlap model (AOM). The derived Slater-Condon and spin-orbit parameters have allowed us to systematically rationalize the spectroscopic and magnetic properties of the investigated free ions and complexes along the entire actinide series. Overall, the AILFT- and AOM-derived parameters accurately reproduce the multireference electronic structure calculations. The small observed discrepancies with respect to experimentally derived ligand-field parameters are essentially due to an underestimation of the electronic correlation, which arises from both the constrained size of the active space (restricted to the f orbitals) and the limit of the perturbation approach to account for dynamical correlation. Our analysis also provides insight into the metal-ligand covalency trends along the series. Consistent with natural population analysis, the nephelauxetic (Slater-Condon parameters) and relativistic nephelauxetic (spin-orbit-coupling) reductions determined for these complexes indicate a decrease in the covalency along the series. These trends also hold, to varying extents, for the corresponding tetravalent derivatives, as well as the lanthanide analogues.
Current knowledge on pain-related cerebral networks has relied so far on stimulus-induced brain responses, but not on the analysis of brain activity during spontaneous pain attacks. In this case report, correlation between intracerebral field potentials and online sensations during spontaneously painful epileptic seizures suggests a crucial role of the insula in the development of subjective pain. Attacks originated from a very limited dysplasia located in the posterior third of the right insula and propagated to other areas of the pain matrix, including the parietal operculum and the midcingulate gyrus. Concomitant painful symptoms started on the left hand or the left foot and extended in a few seconds to the whole left side of the body, sparing the head. Continuous during the first seconds of the attack, the painful feeling evolved to throbbing and remained so until it progressively vanished, together with the spike discharge. Stimulation of the insula, but not of other pain matrix regions, induced pain identical to that of seizures. After thermocoagulation of the insular epileptic focus, a short, transient exacerbation of seizures with same painful features but different location was observed before a long-lasting and complete remission of the attacks. Although these preliminary data need to be confirmed, they strongly suggest that if the full pain experience involves the pain matrix network, the posterior insula seems to play a leading role in the triggering of this network and the resulting emergence of subjective pain experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.