Abstract. The Green Edge initiative was developed to investigate the processes controlling the primary productivity and fate of organic matter produced during the Arctic phytoplankton spring bloom (PSB) and to determine its role in the ecosystem. Two field campaigns were conducted in 2015 and 2016 at an ice camp located on landfast sea ice southeast of Qikiqtarjuaq Island in Baffin Bay (67.4797∘ N, 63.7895∘ W). During both expeditions, a large suite of physical, chemical and biological variables was measured beneath a consolidated sea-ice cover from the surface to the bottom (at 360 m depth) to better understand the factors driving the PSB. Key variables, such as conservative temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chlorophyll a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and fluxes were routinely measured at the ice camp. Meteorological and snow-relevant variables were also monitored. Here, we present the results of a joint effort to tidy and standardize the collected datasets, which will facilitate their reuse in other Arctic studies. The dataset is available at https://doi.org/10.17882/59892 (Massicotte et al., 2019a).
Abstract. We present an experiment on fifty multilayer perceptrons trained for streamflow forecasting on three watersheds using bootstrapped input series. This type of neural network is common in hydrology and using multiple training repetitions (ensembling) is a popular practice: the information issued by the ensemble is then aggregated and considered to be the final output. Some authors proposed that the ensemble could serve the calculation of confidence intervals around the ensemble mean. In the following, we are interested in the reliability of confidence intervals obtained in such fashion and in tracking the evolution of the ensemble of neural networks during the training process. For each iteration of this process, the mean of the ensemble is computed along with various confidence intervals. The performance of the ensemble mean is evaluated based on the mean absolute error. Since the ensemble of neural networks resemble an ensemble streamflow forecast, we also use ensemble-specific quality assessment tools such as the Continuous Ranked Probability Score to quantify the forecasting performance of the ensemble formed by the neural networks repetitions. We show that while the performance of the single predictor formed by the ensemble mean improves throughout the training process, the reliability of the associated confidence intervals starts to decrease shortly after the initiation of this process. While there is no moment during the training where the reliability of the confidence intervals is perfect, we show that it is best after approximately 5 to 10 iterations, depending on the basin. We also show that the Continuous Ranked Probability Score and the logarithmic score do not evolve in the same fashion during the training, due to a particularity of the logarithmic score.Correspondence to: M.-A. Boucher (marie-a.boucher.1@ulaval.ca)
Summertime wildfire activity is increasing in boreal forest and tundra ecosystems in the Northern Hemisphere. However, the impact of long range transport and deposition of wildfire aerosols on biogeochemical cycles in the Arctic Ocean is unknown. Here, we use satellite-based ocean color data, atmospheric modeling and back trajectory analysis to investigate the transport and fate of aerosols emitted from Siberian wildfires in summer 2014 and their potential impact on phytoplankton dynamics in the Arctic Ocean. We detect large phytoplankton blooms near the North Pole (up to 82°N in the eastern Eurasian Basin). Our analysis indicates that these blooms were induced by the northward plume transport and deposition of nutrient-bearing wildfire aerosols. We estimate that these highly stratified surface waters received large amounts of wildfire-derived nitrogen, which alleviated nutrient stress in the phytoplankton community and triggered an unusually large bloom event. Our findings suggest that changes in wildfire activity may strongly influence summertime productivity in the Arctic Ocean.
Abstract:Empirical methods based on band ratios to infer chlorophyll-a concentration by satellite do not perform well over the optically complex waters of the St. Lawrence Estuary and Gulf. Using a dataset of 93 match-ups, we explore an alternative method relying on empirical orthogonal functions (EOF) to develop an algorithm that relates the satellite-derived remote sensing reflectances to in situ chlorophyll-a concentration for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Results show that an accuracy of 41% at retrieving chlorophyll-a concentration can be reached using the EOF method compared to 140% for the widely-used Ocean Chlorophyll 4 (OC4v4) empirical algorithm, 53% for the Garver-Siegel-Maritorena (GSM01) and 54% for the Generalized Inherent Optical Property (GIOP) semi-analytical algorithms. This result is possible because the EOF approach is able to extract region-specific radiometric features from the satellite remote sensing reflectances that are related to absorption properties of optical components (water, coloured dissolved organic matter and chlorophyll-a) using the visible SeaWiFS channels. The method could easily be used with other ocean-colour satellite sensors (e.g., MODIS, MERIS, VIIRS, OLCI) to extend the time series for the St. Lawrence Estuary and Gulf waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.