We demonstrate that confined Tamm plasmon modes can be advantageously exploited for the realization of new kind of metal/semiconductor lasers. Laser emission is demonstrated for Tamm structures with various diameters of the metallic disks which provide the confinement. A reduction of the threshold with the size is observed. The competition between the acceleration of the spontaneous emission and the increase of the losses leads to an optimal size, which is in good agreement with calculations.
International audienceWe demonstrate theoretically and experimentally that the three-dimensional orientation of a single fluorescent nanoemitter can be determined by polarization analysis of the emitted light (while excitation polarization analysis provides only the in-plane orientation). The determination of the emitter orientation by polarimetry requires a theoretical description, including the objective numerical aperture, the 1D or 2D nature of the emitting dipole, and the environment close to the dipole. We develop a model covering most experimentally relevant microscopy configurations and provide analytical relations that are useful for orientation measurements. We perform polarimetric measurements on high-quality core-shell CdSe/CdS nanocrystals and demonstrate that they can be approximated by two orthogonal degenerated dipoles. Finally, we show that the orientation of a dipole can be inferred by polarimetric measurement, even for a dipole in the vicinity of a gold film, while in this case, the well-established defocused microscopy is not appropriate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.