Two novel frustrated Lewis pair (FLP) aminoboranes, (1-Pip-2-BH-CH) (2; Pip = piperidyl) and (1-NEt-2-BH-CH) (3; NEt = diethylamino), were synthesized, and their structural features were elucidated both in solution and in the solid state. The reactivity of these species for the borylation of heteroarenes was investigated and compared to previously reported (1-TMP-2-BH-CH) (1; TMP = tetramethylpiperidyl) and (1-NMe-2-BH-CH) (4; NMe = dimethylamino). It was shown that 2 and 3 are more active catalysts for the borylation of heteroarenes than the bulkier analogue 1. Kinetic studies and density functional theory calculations were performed with 1 and 2 to ascertain the influence of the amino group of this FLP-catalyzed transformation. The C-H activation step was found to be more facile with smaller amines at the expense of a more difficult dissociation of the dimeric species. The bench-stable fluoroborate salts of all catalysts (1F-4F) have been synthesized and tested for the borylation reaction. The new precatalysts 2F and 3F are showing higher reaction rates and yields for multigram-scale syntheses.
The ansa-aminohydroborane 1-NMe2 -2-(BH2 )C6 H4 crystallizes in an unprecedented type of dimer containing a B-H bond activated by one FLP moiety. Upon mild heating and without the use of any catalyst, this molecule liberates one equivalent of hydrogen to generate a diborane molecule. The synthesis and structural characterization of these new compounds, as well as the kinetic monitoring of the reaction and the DFT investigation of its mechanism, are reported.
While the organotrifluoroborate group is commonly used as a leaving group in cross-coupling reactions, we now show that their high stability can be used to protect the Lewis acidic moieties of frustrated Lewis pair catalysts. Indeed, the air and moisture-stable trifluoro- and difluoroborate derivatives of bulky (tetramethylpiperidino)benzene are shown to be conveniently converted to their dihydroborane analogue which is known to activate small molecules. An efficient synthesis route to these stable and convenient precatalysts, their deprotection chemistry and their benchtop use for the dehydrogenative borylation of heteroarenes is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.