Multipath (MP) remains the main source of error when using global navigation satellite systems (GNSS) in a constrained environment, leading to biased measurements and thus to inaccurate estimated positions. This paper formulates the GNSS navigation problem as the resolution of an overdetermined system whose unknowns are the receiver position and speed, clock bias and clock drift, and the potential biases affecting GNSS measurements. We assume that only a part of the satellites are affected by MP, i.e., that the unknown bias vector has several zero components, which allows sparse estimation theory to be exploited. The natural way of enforcing this sparsity is to introduce an 1 regularization associated with the bias vector. This leads to a least absolute shrinkage and selection operator problem that is solved using a reweighted-1 algorithm. The weighting matrix of this algorithm is designed carefully as functions of the satellite carrier-to-noise density ratio (C/N 0) and the satellite elevations. Experimental validation conducted with real GPS data show the effectiveness of the proposed method as long as the sparsity assumption is respected.
This letter studies a new expectation maximization (EM) algorithm to solve the problem of circle, sphere and more generally hypersphere fitting. This algorithm relies on the introduction of random latent vectors having a priori independent von Mises-Fisher distributions defined on the hypersphere. This statistical model leads to a complete data likelihood whose expected value, conditioned on the observed data, has a Von Mises-Fisher distribution. As a result, the inference problem can be solved with a simple EM algorithm. The performance of the resulting hypersphere fitting algorithm is evaluated for circle and sphere fitting.
Multipath remains the main source of error when using global navigation satellite systems (GNSS) in constrained environment, leading to biased measurements and thus to inaccurate estimated positions. This paper formulates the GNSS navigation problem as the resolution of an overdetermined system, which depends nonlinearly on the receiver position and linearly on the clock bias and drift, and possible biases affecting GNSS measurements. The extended Kalman filter is used to linearize the navigation problem whereas sparse estimation is considered to estimate multipath biases. We assume that only a part of the satellites are affected by multipath, i.e., that the unknown bias vector is sparse in the sense that several of its components are equal to zero. The natural way of enforcing sparsity is to introduce an 1 regularization associated with the bias vector. This leads to a least absolute shrinkage and selection operator (LASSO) problem that is solved using a reweighted-1 algorithm. The weighting matrix of this algorithm is designed carefully as functions of the satellite carrier to noise density ratio and the satellite elevations. The smooth variations of multipath biases versus time are enforced using a regularization based on total variation. An experiment conducted on real data allows the performance of the proposed method to be appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.