The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose highcontrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500 nm allowing for coronagraphic direct exoplanet imaging of the inner 3 λ/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 λ/D. Non-common path, loworder aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.
We present SCExAO/CHARIS high-contrast imaging/JHK integral field spectroscopy of κ And b, a directly-imaged low-mass companion orbiting a nearby B9V star. We detect κ And b at a high signal-to-noise and extract high precision spectrophotometry using a new forward-modeling algorithm for (A-)LOCI complementary to KLIP-FM developed by Corresponding author: Thayne Currie thayne.m.currie@nasa.gov,currie@naoj.org Currie et al. Pueyo et al. (2016). κ And b's spectrum best resembles that of a low-gravity L0-L1 dwarf (L0-L1γ). Its spectrum and luminosity are very well matched by 2MASSJ0141-4633 and several other 12.5-15 M J free floating members of the 40 M yr-old Tuc-Hor Association, consistent with a system age derived from recent interferometric results for the primary, a companion mass at/near the deuterium-burning limit (13 +12 −2 M J ), and a companion-to-primary mass ratio characteristic of other directly-imaged planets (q ∼ 0.005 +0.005 −0.001 ). We did not unambiguously identify additional, more closely-orbiting companions brighter and more massive than κ And b down to ρ ∼ 0. ′′ 3 (15 au). SCExAO/CHARIS and complementary Keck/NIRC2 astrometric points reveal clockwise orbital motion. Modeling points towards a likely eccentric orbit: a subset of acceptable orbits include those that are aligned with the star's rotation axis. However, κ And b's semimajor axis is plausibly larger than 75 au and in a region where disk instability could form massive companions.Deeper κ And high-contrast imaging and low-resolution spectroscopy from extreme AO systems like SCExAO/CHARIS and higher resolution spectroscopy from Keck/OSIRIS or, later, IRIS on the Thirty Meter Telescope could help clarify κ And b's chemistry and whether its spectrum provides an insight into its formation environment.
Two studies utilizing sparse aperture-masking (SAM) interferometry and H α differential imaging have reported multiple jovian companions around the young solar-mass star, LkCa 15 (LkCa 15 bcd): the first claimed direct detection of infant, newly formed planets ("protoplanets"). We present new near-infrared direct imaging/spectroscopy from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Coronagraphic High 2 Angular Resolution Imaging Spectrograph (CHARIS) integral field spectrograph and multi-epoch thermal infrared imaging from Keck/NIRC2 of LkCa 15 at high Strehl ratios. These data provide the first direct imaging look at the same wavelengths and in the same locations where previous studies identified the LkCa 15 protoplanets, and thus offer the first decisive test of their existence.The data do not reveal these planets. Instead, we resolve extended emission tracing a dust disk with a brightness and location comparable to that claimed for LkCa 15 bcd. Forward-models attributing this signal to orbiting planets are inconsistent with the combined SCExAO/CHARIS and Keck/NIRC2 data. An inner disk provides a more compelling explanation for the SAM detections and perhaps also the claimed H α detection of LkCa 15 b.We conclude that there is currently no clear, direct evidence for multiple protoplanets orbiting LkCa 15, although the system likely contains at least one unseen jovian companion. To identify jovian companions around LkCa 15 from future observations, the inner disk should be detected and its effect modeled, removed, and shown to be distinguishable from planets. Protoplanet candidates identified from similar systems should likewise be clearly distinguished from disk emission through modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.