We have conducted a high-resolution imaging study of the Taurus-Auriga star-forming region in order to characterize the primordial outcome of multiple star formation and the extent of the brown dwarf desert. Our survey identified 16 new binary companions to primary stars with masses of 0.25-2.5 M ⊙ , raising the total number of binary pairs (including components of high-order multiples) with separations of 3-5000 AU to 90. We find that ∼2/3-3/4 of all Taurus members are multiple systems of two or more stars, while the other ∼1/4-1/3 appear to have formed as single stars; the distribution of high-order multiplicity suggests that fragmentation into a wide binary has no impact on the subsequent probability that either component will fragment again. The separation distribution for solar-type stars (0.7-2.5 M ⊙ ) is nearly log-flat over separations of 3-5000 AU, but lower-mass stars (0.25-0.7 M ⊙ ) show a paucity of binary companions with separations of 200 AU. Across this full mass range, companion masses are well described with a linear-flat function; all system mass ratios (q = M B /M A ) are equally probable, apparently including substellar companions. Our results are broadly consistent with the two expected modes of binary formation (freefall fragmentation on large scales and disk fragmentation on small scales), but the distributions provide some clues as to the epochs at which the companions are likely to form.
We present the results of a survey for stellar and substellar companions to 82 young stars in the nearby OB association Upper Scorpius. This survey used nonredundant aperture mask interferometry to achieve typical contrast limits of ÁK $ 5 Y6 at the diffraction limit, revealing 12 new binary companions that lay below the detection limits of traditional high-resolution imaging; we also summarize a complementary snapshot imaging survey that discovered seven directly resolved companions. The overall frequency of binary companions ($35 þ5 À4 % at separations of 6Y435 AU) appears to be equivalent to field stars of similar mass, but companions could be more common among lower mass stars than for the field. The companion mass function has statistically significant differences compared to several suggested mass functions for the field, and we suggest an alternate lognormal parameterization of the mass function. Our survey limits encompass the entire brown dwarf mass range, but we only detected a single companion that might be a brown dwarf; this deficit resembles the so-called brown dwarf desert that has been observed by radial velocity planet searches. Finally, our survey's deep detection limits extend into the top of the planetary mass function, reaching 8Y12 M Jup for half of our sample. We have not identified any planetary companions at high confidence (k99.5%), but we have identified four candidate companions at lower confidence (k97.5%) that merit additional follow-up to confirm or disprove their existence.
The past decade has seen a revolution in our understanding of protoplanetary disk evolution and planet formation in single star systems. However, the majority of solar-type stars form in binary systems, so the impact of binary companions on protoplanetary disks is an important element in our understanding of planet formation. We have compiled a combined multiplicity/disk census of Taurus-Auriga, plus a restricted sample of close binaries in other regions, in order to explore the role of multiplicity in disk evolution. Our results imply that the tidal influence of a close ( 40 AU) binary companion significantly hastens the process of protoplanetary disk dispersal, as ∼2/3 of all close binaries promptly disperse their disks within 1 Myr after formation. However, prompt disk dispersal only occurs for a small fraction of wide binaries and single stars, with ∼80%-90% retaining their disks for at least ∼2-3 Myr (but rarely for more than ∼5 Myr). Our new constraints on the disk clearing timescale have significant implications for giant planet formation; most single stars have 3-5 Myr within which to form giant planets, whereas most close binary systems would have to form giant planets within 1 Myr. If core accretion is the primary mode for giant planet formation, then gas giants in close binaries should be rare. Conversely, since almost all single stars have a similar period of time within which to form gas giants, their relative rarity in RV surveys indicates either that the giant planet formation timescale is very well-matched to the disk dispersal timescale or that features beyond the disk lifetime set the likelihood of giant planet formation.
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose highcontrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500 nm allowing for coronagraphic direct exoplanet imaging of the inner 3 λ/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 λ/D. Non-common path, loworder aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.
At wide separations, planetary-mass and brown dwarf companions to solar type stars occupy a curious region of parameters space not obviously linked to binary star formation or solar-system scale planet formation. These companions provide insight into the extreme case of companion formation (either binary or planetary), and due to their relative ease of observation when compared to close companions, they offer a useful template for our expectations of more typical planets. We present the results from an adaptive optics imaging survey for wide (∼50-500 AU) companions to solar type stars in Upper Scorpius. We report one new discovery of a ∼14 M J companion around GSC 06214-00210, and confirm that the candidate planetary mass companion 1RXS J160929.1-210524 detected by Lafrenière et al. (2008b) is in fact co-moving with its primary star. In our survey, these two detections correspond to ∼4% of solar type stars having companions in the 6-20 M J mass and ∼200-500 AU separation range. This figure is higher than would be expected if brown dwarfs and planetary mass companions were drawn from an extrapolation of the binary mass function. Finally, we discuss implications for the formation of these objects. Subject headings: brown dwarfs, planetary systems, Infrared: planetary systems,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.