Abstract-We study a model of opinion dynamics introduced by Krause: each agent has an opinion represented by a real number, and updates its opinion by averaging all agent opinions that differ from its own by less than one. We give a new proof of convergence into clusters of agents, with all agents in the same cluster holding the same opinion. We then introduce a particular notion of equilibrium stability and provide lower bounds on the inter-cluster distances at a stable equilibrium. To better understand the behavior of the system when the number of agents is large, we also introduce and study a variant involving a continuum of agents, obtaining partial convergence results and lower bounds on inter-cluster distances, under some mild assumptions.
While rich medical, behavioral, and socio-demographic data are key to modern data-driven research, their collection and use raise legitimate privacy concerns. Anonymizing datasets through de-identification and sampling before sharing them has been the main tool used to address those concerns. We here propose a generative copula-based method that can accurately estimate the likelihood of a specific person to be correctly re-identified, even in a heavily incomplete dataset. On 210 populations, our method obtains AUC scores for predicting individual uniqueness ranging from 0.84 to 0.97, with low false-discovery rate. Using our model, we find that 99.98% of Americans would be correctly re-identified in any dataset using 15 demographic attributes. Our results suggest that even heavily sampled anonymized datasets are unlikely to satisfy the modern standards for anonymization set forth by GDPR and seriously challenge the technical and legal adequacy of the de-identification release-and-forget model.
Abstract-We consider continuous-time consensus seeking systems whose time-dependent interactions are cut-balanced, in the following sense: if a group of agents influences the remaining ones, the former group is also influenced by the remaining ones by at least a proportional amount. Models involving symmetric interconnections and models in which a weighted average of the agent values is conserved are special cases. We prove that such systems always converge. We give a sufficient condition on the evolving interaction topology for the limit values of two agents to be the same. Conversely, we show that if our condition is not satisfied, then these limits are generically different. These results allow treating systems where the agent interactions are a priori unknown, e.g., random or determined endogenously by the agent values. We also derive corresponding results for discretetime systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.