Islet encapsulation requires several properties including (1) biocompatibility, (2) immunoprotection, and (3) oxygen diffusion for islet survival and diabetes correction. New chemical alginates were tested in vivo and compared with traditional high-mannuronate and -guluronate alginates. New alginates with coupled peptide sequence (sterile lyophilized high mannuronate [SLM]-RGD3% and sterile lyophilized high guluronate [SLG]-RGD3%), to improve encapsulated cell adherence in the matrix, and alginates with a very low viscosity (VLDM7% and VLDG7%), to reduce implant size by loading a higher number of islets per volume of polymer, were implanted subcutaneously in 70 Wistar rats for comparison with alginates of high viscosity and high content of mannuronic (SLM3%) or guluronic acids (SLG3%). Permeability of alginates to 36-, 75-, and 150-kDa lectins coupled to fluorescein isothiocynate was quantified before implantation and at 2, 4, and 12 weeks after implantation. Biocompatibility (fibrosis, graft stability, immunologic infiltration by CD3/CD68 cells, and neovascularization) was assessed at each explantation time. Permeability to small molecules was found for all alginates. Impermeability to 150-kDa molecules, such as IgG, was observed only for SLM3% before implantation and was maintained up to 12 weeks after implantation. SLM3% and SLG3% demonstrated better graft stability with lower CD3/CD68 recruitment and fibrosis than the other alginates. SLM3% induced a significantly higher angiogenesis and maintained oxygen pressure at approximately 40 mm Hg for up to 4 weeks after implantation as measured by in vivo electronic paramagnetic resonance oximetry. SLM-encapsulated pig islets implanted subcutaneously in rats demonstrated no inflammatory/immunologic reactions and islets functioned for up to 60 days without immunosuppression. A traditional alginate made of high mannuronic content (SLM3%) is an adapted material to immunoprotect islets in subcutaneous tissue. No improvement was found with lower viscosity and use of GRGDSP-peptide sequence.
Fibrolamellar carcinoma (FLC) is a rare variant of hepatocellular carcinoma, occurring in children and young adults without underlying liver disease. The diagnosis is based on morphological characteristics of the tumor, supplemented by immunohistochemistry and/or genetic testing. Recently, the presence of a characteristic DNAJB1‐PRKACA fusion gene has been associated with FLC. Herein, we report a case of FLC presenting as peritoneal carcinomatosis in a 14‐year‐old female. Interestingly, no liver tumor was seen on imaging, and an alternative possibility is that the tumor arose outside the liver as a hepatoid carcinoma with fibrolamellar features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.