Double PHD fingers 3 (DPF3) is a human epigenetic factor found in the multiprotein BRG1-associated factor (BAF) chromatin remodeling complex. It has two isoforms: DPF3b and DPF3a, but very little is known about the latter. Despite the lack of structural data, it has been established that DPF3a is involved in various protein–protein interactions and that it is subject to phosphorylation. These features are typical of intrinsically disordered proteins (IDPs) for which the disorder is essential to their functionality. IDPs are also prone to aggregation and can assemble into cytotoxic amyloid fibrils in specific pathological contexts. In the present work, the DPF3a disordered nature and propensity to aggregation have been investigated using a combination of disorder predictors and biophysical methods. The DPF3a-predicted disordered character has been correlated to a characteristic random coil signal in far-UV circular dichroism (CD) and to a fluorescence emission band typical of Trp residues fully exposed to the solvent. After DPF3a purification and 24 h of incubation at room temperature, dynamic light scattering confirmed the presence of DPF3a aggregates whose amyloid nature have been highlighted by a specific deep-blue autofluorescence signature, as well as by an increase in thioflavin T fluorescence upon binding. These results are supported by an enrichment in twisted β-sheets as observed in far-UV CD and a blue shift in intrinsic Trp fluorescence. Both indicate that DPF3a spontaneously tends to orderly aggregate into amyloid fibrils. The diversity of optical signatures originates from dynamical transitions between the disordered and aggregated states of the protein during the incubation. Transmission electron microscopy micrographs reveal that the DPF3a fibrillation process leads to the formation of short needle-shape filaments.
Double-PHD fingers 3 (DPF3) is a BAF-associated human epigenetic regulator, which is increasingly recognised as a major contributor to various pathological contexts, such as cardiac defects, cancer, and neurodegenerative diseases. Recently, we unveiled that its two isoforms (DPF3b and DPF3a) are amyloidogenic intrinsically disordered proteins. DPF3 isoforms differ from their C-terminal region (C-TERb and C-TERa), containing zinc fingers and disordered domains. Herein, we investigated the disorder aggregation properties of C-TER isoforms. In agreement with the predictions, spectroscopy highlighted a lack of a highly ordered structure, especially for C-TERa. Over a few days, both C-TERs were shown to spontaneously assemble into similar antiparallel and parallel β-sheet-rich fibrils. Altered metal homeostasis being a neurodegeneration hallmark, we also assessed the influence of divalent metal cations, namely Cu2+, Mg2+, Ni2+, and Zn2+, on the C-TER aggregation pathway. Circular dichroism revealed that metal binding does not impair the formation of β-sheets, though metal-specific tertiary structure modifications were observed. Through intrinsic and extrinsic fluorescence, we found that metal cations differently affect C-TERb and C-TERa. Cu2+ and Ni2+ have a strong inhibitory effect on the aggregation of both isoforms, whereas Mg2+ impedes C-TERb fibrillation and, on the contrary, enhances that of C-TERa. Upon Zn2+ binding, C-TERb aggregation is also hindered, and the amyloid autofluorescence of C-TERa is remarkably red-shifted. Using electron microscopy, we confirmed that the metal-induced spectral changes are related to the morphological diversity of the aggregates. While metal-treated C-TERb formed breakable and fragmented filaments, C-TERa fibrils retained their flexibility and packing properties in the presence of Mg2+ and Zn2+ cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.