(M.L.); 0000-0002-5725-885X (J.P.); 0000-0001-7707-7776 (J.-P.R.).The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genomewide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening.As a developmental process, fruit ripening is coordinated by a complex network of endogenous and exogenous cues. Indeed, the making of a fruit is a genetically regulated process unique to plants involving three distinct stages: fruit set, development, and ripening. Fruit development is characterized by a series of developmental transitions tightly coordinated by a network of interacting genes and signaling pathways. Among these, ripening has received the greatest attention from both geneticists and breeders. From the scientific point of view, fruit ripening is seen as a process in which the biochemistry and physiology of the organ are developmentally altered to influence the appearance, texture, flavor, and aroma (Giovannoni, 2004). Since most of the fruit sensory and nutritional quality traits are elaborated at the ripening stage, deciphering the key genetic and molecular factors regulating ripening becomes a major task toward improving overall fruit quality (Carrari and Fernie, 2006). In addition, the control of fruit ripening is also instrumental to maintain the quality attributes of the fruit during the postharvest shelf life.Based on their mode of ripening, fleshy fruits are divided into two categories, climacteric and nonclimacteric, depending on the presence or absence of the climacteric rise in respiration and of autocatalytic ethylene production (Lelièvre et al., 1997). In climacteric fruit, the plant hormone ethylene is the major cue that controls most aspects of ripening. By contrast, the ripening of nonclimacteric fruit does not strictly depend on ethylene, and the nature of the triggers of ripening in this type of fruit remains yet to be elucidated. Since the upstream components of the ethylene transduction pathway are common to all ethylene responses, the apparent simplicity of the ethylene signaling pathway cannot account for the wide diversity of ethylene responses. A plausible hypothesis is that dif...
(E.M.); 0000-0001-7707-7776 (J.-P.R.); 0000-0002-5725-885X (J.P.).Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripeningassociated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene-and RIN/NOR-dependent ripening.The plant hormone ethylene is involved in a wide range of developmental processes and physiological responses such as flowering, fruit ripening, organ senescence, abscission, root nodulation, seed germination, programmed cell death, cell expansion, and responses to abiotic stresses and pathogen attacks. In the last decades, tremendous progress has been made toward deciphering the mechanisms by which plants perceive and respond to ethylene (Benavente and Alonso, 2006;Ju et al., 2012). Studies on components of ethylene signaling have revealed a linear transduction pathway that ultimately leads to the activation of transcriptional regulators belonging to the ethylene response factor (ERF) family of transcription factors. While the upstream components of the ethylene transduction pathway are common to all ethylene responses, the apparent simplicity of the hormone signaling pathway cannot account for the wide diversity and specificity of biological responses. ERFs are one of the largest families of plant transcription factors, and in this regard, they represent a suitable step where the diversity and specificity of ethylene responses can be expressed. These downstream components of ethylene signaling are the main mediators of ethylenedependent gene transcription.Considering the importance of fleshy fruits for a healthy diet and the prominent role assigned to ethylene in the control of fruit ripening, substantial advances have been made to uncover the molecular mechanisms that control fruit development...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.