When measured in vivo electromechanical delay (EMD) depends mainly on the elastic properties of the muscle-tendon unit. Recent studies have shown changes in stiffness of the triceps surae (TS) following a period of training. To confirm the influence of musculo-tendinous stiffness on EMD, this study investigates paired changes in these two parameters after a training period. Two types of training known to induce opposite changes in stiffness were analysed. EMD and musculo-tendinous stiffness were measured on adult subjects before and after 10 weeks of endurance (n = 21) or plyometric (n = 9) trainings. EMD was defined as the time lag between the TS M-wave latency and the onset of muscle twitch evoked at rest by supramaximal electrical stimulations of the posterior tibial nerve. Quick release tests were used to evaluate the musculo-tendinous stiffness of the ankle plantar flexors. The stiffness index was defined as the slope of the relationship between angular stiffness and external torque values. Endurance training, known to preferentially activate the slow, stiffer muscle fibers, leads to a decrease in EMD and to an increase in stiffness index. Following plyometric training, which specifically recruits fast, more compliant fibers, EMD and the stiffness index exhibited adaptations directionally opposite to those seen with endurance training. When pooling the data for the two subject groups, a correlation was found between changes in EMD and changes in musculo-tendinous stiffness indexes. Thus, changes in EMD values are proposed to indirectly link to changes in musculo-tendinous stiffness for subjects involved in muscle training.
BackgroundThe loads to which professional rugby players are subjected has been identified as a concern by coaches, players and administrators. In November 2014, World Rugby commissioned an expert group to identify the physical demands and non-physical load issues associated with participation in professional rugby.ObjectiveTo describe the current state of knowledge about the loads encountered by professional rugby players and the implications for their physical and mental health.FindingsThe group defined ‘load’ as it relates to professional rugby players as the total stressors and demands applied to the players. In the 2013–2014 seasons, 40% of professional players appeared in 20 matches or more, and 5% of players appeared in 30 matches or more. Matches account for ∼5–11% of exposure to rugby-related activities (matches, team and individual training sessions) during professional competitions. The match injury rate is about 27 times higher than that in training. The working group surmised that players entering a new level of play, players with unresolved previous injuries, players who are relatively older and players who are subjected to rapid increases in load are probably at increased risk of injury. A mix of ‘objective’ and ‘subjective’ measures in conjunction with effective communication among team staff and between staff and players was held to be the best approach to monitoring and managing player loads. While comprehensive monitoring holds promise for individually addressing player loads, it brings with it ethical and legal responsibilities that rugby organisations need to address to ensure that players’ personal information is adequately protected.ConclusionsAdministrators, broadcasters, team owners, team staff and the players themselves have important roles in balancing the desire to have the ‘best players’ on the field with the ongoing health of players. In contrast, the coaching, fitness and medical staff exert significant control over the activities, duration and intensity of training sessions. If load is a major risk factor for injury, then managing training loads should be an important element in enabling players to perform in a fit state as often as possible.
This study aimed to determine whether the duration (0, 6, or 24 hours) of recovery between strength and aerobic sequences influences the responses to a concurrent training program. Fifty-eight amateur rugby players were randomly assigned to control (CONT), concurrent training (C-0h, C-6h, or C-24h), or strength training (STR) groups during a 7-week training period. Two sessions of each quality were proposed each week with strength always performed before aerobic training. Neuromuscular and aerobic measurements were performed before and immediately after the overall training period. Data were assessed for practical significance using magnitude-based inference. Gains in maximal strength for bench press and half squat were lower in C-0h compared with that in C-6h, C-24h, and STR. The maximal voluntary contraction (MVC) during isokinetic knee extension at 60°·s(-1) was likely higher for C-24h compared with C-0h. Changes in MVC at 180°·s(-1) was likely higher in C-24h and STR than in C-0h and C-6h. Training-induced gains in isometric MVC for C-0h, C-6h, C-24h, and STR were unclear. V[Combining Dot Above]O2peak increased in C-0h, C-6h, and C-24h. Training-induced changes in V[Combining Dot Above]O2peak were higher in C-24h than in C-0h and C-6h. Our study emphasized that the interference on strength development depends on the recovery delay between the 2 sequences. Daily training without a recovery period between sessions (C-0h) and, to a lesser extent, training twice a day (C-6h), is not optimal for neuromuscular and aerobic improvements. Fitness coaches should avoid scheduling 2 contradictory qualities, with less than 6-hour recovery between them to obtain full adaptive responses to concurrent training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.