Immune cells infiltrating tumors can have important impact on tumor progression and response to therapy. We present an efficient algorithm to simultaneously estimate the fraction of cancer and immune cell types from bulk tumor gene expression data. Our method integrates novel gene expression profiles from each major non-malignant cell type found in tumors, renormalization based on cell-type-specific mRNA content, and the ability to consider uncharacterized and possibly highly variable cell types. Feasibility is demonstrated by validation with flow cytometry, immunohistochemistry and single-cell RNA-Seq analyses of human melanoma and colorectal tumor specimens. Altogether, our work not only improves accuracy but also broadens the scope of absolute cell fraction predictions from tumor gene expression data, and provides a unique novel experimental benchmark for immunogenomics analyses in cancer research (http://epic.gfellerlab.org).
We conducted a pilot clinical trial testing a personalized vaccine generated by autologous dendritic cells (DCs) pulsed with oxidized autologous whole-tumor cell lysate (OCDC), which was injected intranodally in platinum-treated, immunotherapy-naïve, recurrent ovarian cancer patients. OCDC was administered alone (cohort 1, = 5), in combination with bevacizumab (cohort 2, = 10), or bevacizumab plus low-dose intravenous cyclophosphamide (cohort 3, = 10) until disease progression or vaccine exhaustion. A total of 392 vaccine doses were administered without serious adverse events. Vaccination induced T cell responses to autologous tumor antigen, which were associated with significantly prolonged survival. Vaccination also amplified T cell responses against mutated neoepitopes derived from nonsynonymous somatic tumor mutations, and this included priming of T cells against previously unrecognized neoepitopes, as well as novel T cell clones of markedly higher avidity against previously recognized neoepitopes. We conclude that the use of oxidized whole-tumor lysate DC vaccine is safe and effective in eliciting a broad antitumor immunity, including private neoantigens, and warrants further clinical testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.