One of the most important tasks of any cell is to synthesize ribosomes. In eukaryotes, this process occurs sequentially in the nucleolus, the nucleoplasm and the cytoplasm. It involves the transcription and processing of pre-ribosomal RNAs, their proper folding and assembly with ribosomal proteins and the transport of the resulting pre-ribosomal particles to the cytoplasm where final maturation events occur. In addition to the protein and RNA constituents of the mature cytoplasmic ribosomes, this intricate process requires the intervention of numerous protein and small RNA trans-acting factors. These transiently interact with pre-ribosomal particles at various stages of their maturation. Most of the constituents of pre-ribosomal particles have probably now been identified and research in the field is starting to unravel the timing of their intervention and their precise mode of action. Moreover, quality control mechanisms are being discovered that monitor ribosome synthesis and degrade the RNA components of defective pre-ribosomal particles.
In the absence of telomerase, telomeres progressively shorten with every round of DNA replication, leading to replicative senescence. In telomerase-deficient Saccharomyces cerevisiae, the shortest telomere triggers the onset of senescence by activating the DNA damage checkpoint and recruiting homologous recombination (HR) factors. Yet, the molecular structures that trigger this checkpoint and the mechanisms of repair have remained elusive. By tracking individual telomeres, we show that telomeres are subjected to different pathways depending on their length. We first demonstrate a progressive accumulation of subtelomeric single-stranded DNA (ssDNA) through 5′-3′ resection as telomeres shorten. Thus, exposure of subtelomeric ssDNA could be the signal for cell cycle arrest in senescence. Strikingly, early after loss of telomerase, HR counteracts subtelomeric ssDNA accumulation rather than elongates telomeres. We then asked whether replication repair pathways contribute to this mechanism. We uncovered that Rad5, a DNA helicase/Ubiquitin ligase of the error-free branch of the DNA damage tolerance (DDT) pathway, associates with native telomeres and cooperates with HR in senescent cells. We propose that DDT acts in a length-independent manner, whereas an HR-based repair using the sister chromatid as a template buffers precocious 5′-3′ resection at the shortest telomeres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.