This paper introduces the Voices Obscured In Complex Environmental Settings (VOICES) corpus, a freely available dataset under Creative Commons BY 4.0. This dataset will promote speech and signal processing research of speech recorded by far-field microphones in noisy room conditions. Publicly available speech corpora are mostly composed of isolated speech at close-range microphony. A typical approach to better represent realistic scenarios, is to convolve clean speech with noise and simulated room response for model training. Despite these efforts, model performance degrades when tested against uncurated speech in natural conditions. For this corpus, audio was recorded in furnished rooms with background noise played in conjunction with foreground speech selected from the Lib-riSpeech corpus. Multiple sessions were recorded in each room to accommodate for all foreground speech-background noise combinations. Audio was recorded using twelve microphones placed throughout the room, resulting in 120 hours of audio per microphone. This work is a multi-organizational effort led by SRI International and Lab41 with the intent to push forward state-of-the-art distant microphone approaches in signal processing and speech recognition.
This article focuses on speaker recognition using speech acquired using a single distant or far-field microphone in an indoors environment. This study differs from the majority of speaker recognition research, which focuses on speech acquisition over short distances, such as when using a telephone handset or mobile device or far-field microphone arrays, for which beamforming can enhance distant speech signals. We use two large-scale corpora collected by retransmitting speech data in reverberant environments with multiple microphones placed at different distances. We first characterize three different speaker recognition systems ranging from a traditional universal background model (UBM) i-vector system to a state-of-the-art deep neural network (DNN) speaker embedding system with a probabilistic linear discriminant analysis (PLDA) back-end. We then assess the impact of microphone distance and placement, background noise, and loudspeaker orientation on the performance of speaker recognition system for distant speech data. We observe that the recently introduced DNN speaker embedding based systems are far more robust compared to i-vector based systems, providing a significant relative improvement of upto 54% over the baseline UBM i-vector system, and 45.5% over prior DNN-based speaker recognition technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.