The effect of an organically modified layered silicate on the rheological, morphological, and structural properties of immiscible polyethylene/polyamide ͑PE/PA͒ blends was investigated. The blends have been prepared for PA weight fractions ranging from 10 to 90% and at clay weight fractions from 1 to 6%. Scanning electron microscopy and transmission electron microscopy have been used to study the morphology and the structure of the blends. The dispersed phase size was shown to decrease with increasing clay content up to 2% and tends to stabilize at higher fractions. For PE matrix blends, clay particles were shown to be essentially located at the interface of the two polymers, forming an interphase whose thickness grows with clay fraction. For PA matrix blends with 2% of clay, the interphase thickness is stabilized at 11 nm; further clay addition leads to dispersion of clay within PA. Oscillatory and steady shear measurements have shown that PE matrix ternary blends behaved like polymer blends and underlined the contribution of an interphase at high clay fractions. For sufficiently filled PA matrix blends, a yield behavior was observed. The behavior of PA matrix ternary blends, dominated by the organoclay dispersed in PA, is similar to that of nanocomposites.
International audienceThe inter-relationship between processing conditions and fiber breakage has been studied for glass fiber-reinforcedpolyamide 12, prepared using (i) an internal batch mixer, (ii) a laboratory scale corotating twin screw extruder, and (iii) an industrial scale twin screw extruder. The average fiber lengths and fiber length distributions were measured for various compounding conditions (screw or rotor speed, mixing time, feed rate). Experimental results have shown that fiber breakage depends on both screw speed and mixing time, the later being controlled, in an extruder, by the feed rate. For a given compounding system (batch mixer or twin screw extruder), the energy input (specific mechanical energy, SME) during the compounding process is found to be a reliable parameter, which governs fiber length (average, minimal, and maximal) evolution. Experimental data are correctly described with a model defining change in fiber length as a function of SM
International audienceThis paper is devoted to the study of fiber breakage during compounding with a polyamide matrix in a Buss kneader. Results showed a drastic decrease of glass fiber length during compounding, typically from 3500 to 350 mu m. Fiber breakage depended on processing conditions: it increased with screw speed, but the effect of feed rate was less clear. Fiber breakage increased also with the severity of the screw profile. Characterizations of fiber length evolution along the screw profile have also been performed after dead-stop experiments. Generally speaking, fiber length evolution can be described using a modified Shon-Liu-White model, in which either the number of turns or the specific energy is considered
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.