Two types of solid oxide cells with different Ni-YSZ cermet microstructures have been aged in electrolysis and fuel cell modes for operating times ranging from 1000 to 15000 hours. The pristine and aged cermets have been reconstructed by synchrotron X-ray holotomography. Nickel agglomeration has been observed in the bulk of the operated samples inducing a significant loss of triple phase boundary lengths. The inspection of the microstructural properties has confirmed the stabilizing role of YSZ on Ni coarsening. Furthermore, the gradients of properties quantified at the electrolyte interface have revealed a depletion of Ni only in the electrochemically active region of the electrode. The process is strongly promoted for a coarse cermet microstructure when operated under electrolysis current. The evolution of the microstructural properties has been implemented in an in-house multiscale model. The simulations have shown that the loss of performance is dominated by the depletion of Ni in case of a coarse microstructure. Thanks to the computations, it has been shown that the Ni depletion is controlled by the cathodic overpotential. To explain this dependency, it has been proposed that the accumulation of oxygen vacancies in the double layer could deteriorate the Ni/YSZ interface and trigger the Ni depletion.
The reaction mechanism and the impact of microstructure on performances for a porous LSCF‐CGO composite used as O2 electrode in SOCs have been investigated. For this purpose, an integrated approach coupling (i) electrochemical testing, (ii) advanced 3D characterizations, and (iii) modeling was proposed. In this frame, a symmetrical cell was tested in a three‐electrode setup and the microstructure of the LSCF‐CGO working electrode was reconstructed by FIB‐SEM tomography. The experimental polarization curves and the impedance diagrams along with the extracted microstructural parameters were used to validate an in‐house microscale electrochemical model. This model considers two parallel reaction pathways with (i) an oxidation/reduction at TPBls (surface path) and (ii) an oxygen transfer at the gas/LSCF interface (bulk path). It was shown that the LSCF‐CGO electrode reaction mechanism is mostly controlled by the charge transfer at TPBls whatever the polarization. Finally, the impact of electrode composition, porosity and particles size on the cell polarization resistance was investigated by using the electrochemical model in combination with a large dataset of synthetic microstructures generated by a geometrical stochastic model. The effect of each microstructural parameter on the electrode performance was analyzed in order to provide useful guidelines for the cell manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.