Although the importance of signals involved in species recognition and sexual selection to speciation is widely recognized, the processes that underlie signal divergence are still a matter of debate. Several possible processes have been hypothesized, including genetic drift, arbitrary sexual selection, and adaptation to local signaling environments. We use comparative analyses to investigate whether the remarkable geographic variation of dewlap phenotype in a Hispaniolan trunk Anolis lizard (A. distichus) is a result of adaptive signal divergence to heterogeneous environments. We recover a repeated pattern of divergence in A. distichus dewlap color, pattern, and size with environmental variation across Hispaniola. These results are aligned with ecological models of signal divergence and provide strong evidence for dewlap adaptation to local signaling environments. We also find that A. distichus dewlaps vary with the environment in a different manner to other previously studied anoles, thus expanding upon previous predictions on the direction dewlaps will diverge in perceptual color space in response to the environment.
Effective mentoring is a key component of academic and career success that contributes to overall measures of productivity. Mentoring relationships also play an important role in mental health and in recruiting and retaining students from groups underrepresented in STEM fields. Despite these clear and measurable benefits, faculty generally do not receive mentorship training, and feedback mechanisms and assessment to improve mentoring in academia are limited. Ineffective mentoring can negatively impact students, faculty, departments, and institutions via decreased productivity, increased stress, and the loss of valuable research products and talented personnel. Thus, there are clear incentives to invest in and implement formal training to improve mentorship in STEM fields. Here, we outline the unique challenges of mentoring in academia and present results from a survey of STEM scientists that support both the need and desire for more formal mentorship training. Using survey results and the primary literature, we identify common behaviors of effective mentors and outline a set of mentorship best practices. We argue that these best practices, as well as the key qualities of flexibility, communication, and trust, are skills that can be taught to prospective and current faculty. We present a model and resources for mentorship training based on our research, which we successfully implemented at the University of Colorado, Boulder, with graduate students and postdocs. We conclude that such training is an important and cost‐effective step toward improving mentorship in STEM fields.
Biologists have long sought to understand the processes underlying disparities in clade size across the tree of life and the extent to which such clade size differences can be attributed to the evolution of particular traits. The association of certain character states with species-rich clades suggests that trait evolution can lead to increased diversification, but such a pattern could also arise due other processes, such as directional trait evolution. Recent advances in phylogenetic comparative methods have provided new statistical approaches for distinguishing between these intertwined and potentially confounded macroevolutionary processes. Here, we review the historical development of methods for detecting state-dependent diversification and explore what new methods have revealed about classic examples of traits that affect diversification, including evolutionary dead ends, key innovations and geographic traits. Applications of these methods thus far collectively suggest that trait diversity commonly arises through the complex interplay between transition, speciation and extinction rates and that long hypothesized evolutionary dead ends and key innovations are instead often cases of directional trends in trait evolution.
SummaryPhenotypic convergence is rampant throughout the tree of life. While recent studies have made significant progress in ascertaining the proximate mechanisms underlying convergent phenotypes, less is known about the frequency and predictability with which convergent phenotypes arise via the same or multiple pathways at the macroevolutionary scale.We investigated the proximate causes and evolutionary patterns of red flower color in the tomato family, Solanaceae, using large-scale data mining and new sequence data to reconstruct a megaphylogeny of 1341 species. We then combined spectral and anatomical data to assess how many times red flowers have evolved, the relative contribution of different pathways to independent origins of red, and whether the underlying pathway is predicted by phylogenetic relatedness.We estimated at least 30 relatively recent origins of red flowers using anthocyanins, carotenoids, or a dual production of both pigments, with significant phylogenetic signal in the use of anthocyanins and dual production, indicating that closely related red-flowered species tend to employ the same mechanism for coloration.Our study is the first to test whether developmental pathways exhibit phylogenetic signal and implies that historical contingency strongly influences the evolution of new phenotypes.
Long neglected by classic island biogeographical theory, speciation within and among islands is increasingly recognized as a major contributor to insular diversity. Although the factors responsible for island speciation remain poorly understood, this process appears critically dependent on geographical variation and speciation in allopatry or parapatry. Here, we investigate geographical variation and speciation in a complex of Hispaniolan trunk anoles (Anolis distichus), where populations with strikingly distinct dewlap colours and patterns correspond with deeply divergent mtDNA structure. Using a multilocus, population-level analysis, we investigate whether these phenotypically and mitochondrially distinct populations exhibit the type of nuclear differentiation expected among species or incipient species. Along a transect that extends across a recently recessed marine barrier, our results are consistent with the persistence of an abrupt phenotypic and mitochondrial transition following secondary contact, in spite of little or no evidence for a reduction in nuclear gene flow. Along a second transect extending across a steep environmental gradient, our phenotypic and microsatellite data suggest a sharp genetic break with little or no admixture, whereas mtDNA recovers a signature of extensive unidirectional introgression. Together, these results are consistent with previous studies of Lesser Antillean anoles, suggesting that allopatric divergence alone is insufficient for speciation, whereas reduced gene flow and partial reproductive isolation may accumulate in the presence of ecological gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.