Smart agriculture technologies are effective instruments for increasing farm sustainability and production. They generate many spatial, temporal, and time-series data streams that, when analysed, can reveal several issues on farm productivity and efficiency. In this context, the detection of anomalies can help in the identification of observations that deviate from the norm. This paper proposes an adaptation of an ensemble anomaly detector called enhanced locally selective combination in parallel outlier ensembles (ELSCP). On this basis, we define an unsupervised data-driven methodology for smart-farming temporal data that is applied in two case studies. The first considers harvest data including combine-harvester Global Positioning System (GPS) traces. The second is dedicated to crop data where we study the link between crop state (damaged or not) and detected anomalies. Our experiments show that our methodology achieved interesting performance with Area Under the Curve of Precision-Recall (AUCPR) score of 0.972 in the combine-harvester dataset, which is 58.7% better than that of the second-best approach. In the crop dataset, our analysis showed that 30% of the detected anomalies could be directly linked to crop damage. Therefore, anomaly detection could be integrated in the decision process of farm operators to improve harvesting efficiency and crop health.
Cooperative Intelligent Transport Network is one of the most challenging issue in networking and computer science. In this area, huge amount of data are exchanged. Smart analysis of this collected data could be achieved for many purposes: traffic prediction, driver profile detection, anomaly detection, etc. Anomaly detection is an important issue for road operators. An anomaly on roads could be caused by various reasons: potholes, obstacles, weather conditions, etc. An early detection of such anomalies will reduce incident risks such as traffic jams, accidents. The aim of this paper is to collect message exchanges between vehicles and analyze trajectories. This analysis becomes difficult since a privacy principle is applied in the case of C-ITS. Indeed, each message sent is generated with an identifier of the sender. This identifier is kept only over a specified time interval thus one vehicle will have multiple identifiers. We first have to solve Trajectory-User Linking problem by chaining anonymous trajectories to potential vehicles by considering similarity in movement patterns. After that we apply various methods to check variations of trajectories from normal ones. When we observe some differences, we can raise an alarm about a potential anomaly. In order to check the validity of this work, we generated a large amount of messages exchanges by many vehicles using the Omnet ++simulator together with the Artery, Sumo plug-in. We applied various variations on some obtained trajectories. Finally, we ran our detection algorithm on the obtained trajectories using different parameters (angles, speed, acceleration) and obtained very interesting results in terms of detection rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.