The spin-label probe 5-SASL (stearic acid spin-label with nitroxide free radical in position 5 of hydrocarbon chain), detectable by electron spin resonance (ESR), was tested to evaluate pH and reaction time dependencies of hydrophobic interactions with humic acid (HA). Strong changes were observed in 5-SASL ESR spectra in the presence of HA suspensions below pH 5, with disappearance of the three isotropic narrow hyperfine lines of the nitroxide group (typical of free spin-label) and formation of "immobilized" 5-SASL spectra. These changes were interpreted as due to 5-SASL bonding with hydrophobic groups of HA, by van der Waals forces and/or hydrogen bonds, in very hydrophobic sites (probably water-protected) existent in HA below pH 5. However, such sites are absent above pH 5, as demonstrated by a specific experiment to check 5-SASL spectra reversibility. On the other hand, the HA suspension was more efficient in dissolving 5-SASL than water above pH 5. This fact also suggests the existence of "surface" hydrophobic sites, where the spin-label binds to HA while maintaining the nitroxide group in contact with water, as evidenced by the typical free spin-label spectrum and hyperfine interaction splitting (a0 = 1.574 mT). Also experiments checking 5-SASL reversibility bonding with HA were consistent with the supramolecular association model to HA.
The objective of this study is to evaluate the influence of different chemical surface treatments (H 3 PO 4 , HNO 3 , and NaOH) in the formation of calcium phosphate phases on the surface of Al 2 O 3 /ZrO 2 (5 vol%) nanocomposite. For this purpose, Al 2 O 3 /ZrO 2 samples were shaped, calcined at 400°C, sintered at 1500°C, subjected to different chemical treatments, and biomimetically coated from 14 to 21 days. Surface characterization was performed by scanning electron microscopy, atomic force microscopy, confocal microscopy, X-ray diffraction, and infrared spectroscopy. It was observed that the preliminary chemical treatment favored the formation of particular calcium phosphate phases of interest, such as α-TCP (alpha-tricalcium phosphate), β-TCP (betatricalcium phosphate), and HA (hydroxyapatite). The differences among the percentages of the phases formed affected the homogeneity of calcium phosphate distribution within the nanocomposites as well as the roughness of the formed layer, effectively contributing to adhesion, proliferation, and desired cell biofixation on bone implant.
Soil sorption of most hydrophobic organic compounds (e.g., nonpolar pesticides) is directly related to soil organic matter (SOM) content. Humic substances are the major SOM components, containing carboxylic, phenolic, amine, quinone, and other functional groups, and specific structural configurations. In this paper, sorption interactions between imazaquin (2-[4,5-dydro-4-methyl-4-(1-methylethyl)-5-oxo-1H- imidazol-2-yl]-3-quinoline-carboxylic acid) herbicide (IM) and a humic acid (HA) extracted from a typical Brazilian Oxisol were studied with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FTIR) spectroscopic techniques. A polarographic technique was used to quantify sorption. The IM amount sorbed on the HA was much higher than that on the whole soil within the pH range studied, emphasizing the prominent role played by SOM on IM sorption. Moreover, IM sorption increased as the soil-solution pH decreased. This enhancement in sorption was attributed to the hydrophobic affinity of the herbicide by the HA and to the electrostatic interaction between the protonated quinoline group of IM and the negative sites of the HA. Hydrophobic regions in the HA's interior at low pH (< 5.0) were recently demonstrated by an EPR detectable spin-label molecule. The FTIR and EPR spectroscopy and polarography data indicated weak interaction between IM and the soil and its HA, involving hydrogen bonding, proton transfer, and cation exchange (at low pH), and mainly hydrophobic interactions. However, no strong reaction mechanism, such as charge transfer, was involved. In addition, this research suggested that soil amendment with organic material might increase magnitude of IM sorption, consequently avoiding leaching and carryover problems usually found for mobile and persistent herbicides such as imazaquin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.