Science centers such as museums and planetariums have used stereoscopic ("three-dimensional") films to draw interest from and educate their visitors for decades. Despite the fact that most adults who are finished with their formal education get their science knowledge from such free-choice learning settings very little is known about the effect of stereoscopic film presentation on their science learning. We explored this issue by designing a quasi-experimental field trial with a short film about the shape of the Milky Way galaxy. The film was produced based on a set of stereoscopic design principles derived from spatial cognition and cognitive load literature with the goal of lowering the audience's extraneous cognitive load. The film was randomly shown in either two-dimensional (2D) or stereoscopic format to 498 adults who visited a large, urban planetarium. To investigate the extent of audience's change related to galaxy-related spatial concepts, an identical set of questions was asked on iPads before and after the film was shown. A delayed posttest was given to 123 of those adults approximately 6 months later. Test performances were analyzed using repeated measures analysis of covariances (ANCOVAs) with demographic and spatial visualization ability measures as covariates. Results show identical short-term learning gains in both the 2D and stereoscopic groups.
Hybrid virtual reality environments allow analysts to choose how much of the screen real estate they want to use for Virtual Reality (VR) immersion, and how much they want to use for displaying different types of 2D data. We present the use-based design and evaluation of an immersive visual analytics application for cosmological data that uses such a 2D/3D hybrid environment. The applications is a first-in-kind immersive instantiation of the Activity-Centered-Design theoretical paradigm, as well as a first documented immersive instantiation of a details-first paradigm based on scientific workflow theory. Based on a rigorous analysis of the user activities and on a details-first paradigm, the application was designed to allow multiple domain experts to interactively analyze visual representations of spatial (3D) and nonspatial (2D) cosmology data pertaining to dark matter formation. These hybrid data are represented at multiple spatiotemporal scales as time-aligned merger trees, pixel-based heatmaps, GPU-accelerated point clouds and geometric primitives, which can further be animated according to simulation data and played back for analysis. We have demonstrated this multi-scale application to several groups of lay users and domain experts, as well as to two senior domain experts from the Adler Planetarium, who have significant experience in immersive environments. Their collective feedback shows that this hybrid, immersive application can assist researchers in the interactive visual analysis of large-scale cosmological simulation data while overcoming navigation limitations of desktop visualizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.