To explore mechanisms related to hormone resistance, three resistant variants of the MPA mouse breast cancer tumor model with low levels of progesterone receptor (PR) isoform A (PR-A)/high PR-B expression were developed by prolonged selective pressure with antiprogestins. The resistant phenotype of one tumor line was reversed spontaneously after several consecutive passages in syngeneic BALB/c mice or by 17-beta-estradiol or tamoxifen treatment, and this reversion was significantly associated with an increase in PR-A expression. The responsive parental tumors disclosed low activation of ERK and high activation of AKT; resistant tumors on the other hand, showed the opposite, and this was associated with a higher metastatic potential, that did not revert. This study shows for the first time in vivo a relationship between PR isoform expression and antiprogestin responsiveness, demonstrating that, whereas acquired resistance may be reversed, changes in kinase activation and metastatic potential are unidirectional associated with tumor progression.
Introduction Medroxyprogesterone acetate (MPA) induces estrogen receptor (ER)-positive and progesterone receptor (PR)-positive ductal invasive mammary carcinomas in BALB/c mice. We sought to reproduce this MPA cancer model in C57BL/6 mice because of their widespread use in genetic engineering. Within this experimental setting, we studied the carcinogenic effects of MPA, the morphologic changes in mammary glands that are induced by MPA and progesterone, and the levels of ER and PR expression in MPA-treated and progesterone-treated mammary glands. Finally, we evaluated whether the differences found between BALB/c and C57BL/6 mouse strains were due to intrinsic differences in epithelial cells.
To evaluate the extent to which each estrogen receptor (ER) subtype contributes to the stimulation or to the inhibition of mammary tumor growth, we evaluated the effects of specific agonists in MC4-L2 cells, which are stimulated by 17β-estradiol (E(2)), and in mammary carcinomas of the MPA mouse breast cancer model, which are inhibited by E(2). Both express ERα and ERβ. In MC4-L2 cells, 4,4',4"-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT; ERα agonist) and (4-hydroxy-phenyl)-propionitrile (DPN; ERβ agonist) stimulated cell proliferation, whereas the opposite occurred in C4-HI primary cultures. The inhibitory effect was associated with a decrease in ERα and cyclin D1 expression and an increase in progesterone receptor (PR) expression as well as in the Bax/Bcl-xl ratio. In vivo, mice carrying C4-HI or 32-2-HI tumors were treated with E(2), PPT or DPN (3 mg/kg/day) or with vehicle. PPT and DPN inhibited tumor size, as did E(2), during the first 72 h. After a few days, DPN-treated tumors started to grow again, while PPT-treated tumors remained quiescent for a longer period of time. A pronounced decrease in the mitotic index and an increase in the apoptotic index was associated with tumor regression. All treated tumors showed: (a) an increase in integrin α6 and Bax expression, (b) an increased stromal laminin redistribution, and (c) a decrease in ERα, Bcl-xl and Bcl-2 expression (P < 0.001). Apoptosis-inducing factor (Aif) expression was increased in DPN-treated tumors, while active caspase 9 was up-regulated in PPT-treated mice, demonstrating the involvement of the intrinsic apoptotic pathway in estrogen-induced regression in this model. In conclusion, our data indicate that although there may be some preferences for activation pathways by the different agonists, the stimulatory or inhibitory effects triggered by estrogens are cell-context dependent rather than ER isoform dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.