A mathematical formulation for a one-phase change problem in a form of Stefan problem with a memory flux is obtained. The hypothesis that the integral of weighted backward fluxes is proportional to the gradient of the temperature is considered. The model that arises involves fractional derivatives with respect to time both in the sense of Caputo and of Riemann-Liouville. An integral relation for the free boundary, which is equivalent to the "fractional Stefan condition", is also obtained.
Recently it was obtained in [Tarzia, Thermal Sci. 21A (2017) 1-11] for the classical twophase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in
A one-phase Stefan-type problem for a semi-infinite material which has as its main feature a variable latent heat that depends on the power of the position and the velocity of the moving boundary is studied. Exact solutions of similarity type are obtained for the cases when Neumann or Robin boundary conditions are imposed at the fixed face. Required relationships between data are presented in order that these problems become equivalent to the problem where a Dirichlet condition at the fixed face is considered. Moreover, in the case where a Robin condition is prescribed, the limit behaviour is studied when the heat transfer coefficient at the fixed face goes to infinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.