Kefir grains represent a symbiotic association group of yeasts, lactic acid bacteria and acetic acid bacteria within an exopolysaccharide and protein matrix known as kefiran. The mechanism of growth of a biomass of kefir after successive fermentations and optimal conditions is not well understood yet. Biomass growth kinetics were determined to evaluate the effects of temperatures (10 °C to 40 °C) and different substrates, such as monosaccharides (fructose, galactose, glucose), disaccharides (lactose, saccharose) and polysaccharides (Agave angustifolia fructans) at 2%, in reconstituted nonfat milk powder at 10% (w/v) and inoculated with 2% of milk kefir grain (105 CFU/g), after determining the pH kinetics. The best conditions of temperature and substrates were 20 °C and fructans and galactose. An increase in cells, grain sizes and a change in the morphology of the granules with the best substrates were observed using environmental scanning electron microscopy, confocal laser scanning microscopy and Image Digital Analysis (IDA). Kefir grains with agave fructans as their carbon source showed the higher fractal dimension (2.380), related to a greater co-aggregation ability of LAB and yeasts, and increase the formation of exopolysaccharides and the size of the kefir grains, which opens new application possibilities for the use of branched fructans as a substrate for the fermentation of milk kefir grains for the enhancement of cellular biomasses and exopolysaccharide production, as well as IDA as a characterization tool.
The biofunctionality of native and nanostructured starch obtained from blue corn was evaluated on prediabetic Wistar rats. The surface of both types of starch was analyzed by atomic force microscopy (AFM). Total polyphenols content, antioxidant activity and digestibility were also evaluated. Prediabetes was induced by feeding a diet high in fat, carbohydrates and the administration of streptozotocin. Experimental design included a control group, prediabetic group and two prediabetic groups, one supplemented with native starch and the other with nanostructured starch. AFM analysis showed nano-cavities <5 nm in nanostructured starch. Nanostructured starch also had a higher content of total polyphenols, higher antioxidant activity and higher percentage of slow digestibility starch compared to native starch. Glucose, triglycerides 34 and insulin in the plasma increased significantly in the prediabetic group. Nanostructured starch administration decreased the levels of glucose and insulin in the plasma and therefore has potential as functional ingredient.
Prebiotic effects have been attributed to agave fructans through bacterial and yeast fermentations, but there are few reports on their use as raw materials of a carbon source. Kefir milk is a fermented drink with lactic acid bacteria and yeast that coexist in a symbiotic association. During fermentation, these microorganisms mainly consume lactose and produce a polymeric matrix called kefiran, which is an exopolysaccharide composed mainly of water-soluble glucogalactan, suitable for the development of bio-degradable films. Using the biomass of microorganisms and proteins together can be a sustainable and innovative source of biopolymers. In this investigation, the effects of lactose-free milk as a culture medium and the addition of other carbon sources (dextrose, fructose, galactose, lactose, inulin and fructans) in concentrations of 2, 4 and 6% w/w, coupled with initial parameters such as temperature (20, 25 and 30 °C), % of starter inoculum (2, 5 and 10% w/w) was evaluated. The method of response surface analysis was performed to determine the optimum biomass production conditions at the start of the experiment. The response surface method showed that a 2% inoculum and a temperature of 25 °C were the best parameters for fermentation. The addition of 6% w/w agave fructans in the culture medium favored the growth of biomass (75.94%) with respect to the lactose-free culture medium. An increase in fat (3.76%), ash (5.57%) and protein (7.12%) content was observed when adding agave fructans. There was an important change in the diversity of microorganisms with an absence of lactose. These compounds have the potential to be used as a carbon source in a medium culture to increase kefir granule biomass. There was an important change in the diversity of microorganisms with an absence of lactose, where the applied image digital analysis led to the identification of the morphological changes in the kefir granules through modification of the profile of such microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.