Graphene oxide and reduced graphene oxide films have widespread applications in many fields. There are several methods for preparing thin films of these materials in different substrates, but a method that offers low cost and high quality in thin-film fabrication is still lacking. Here, we report a low cost and easily scalable methodology to produce reduced graphene oxide conductive films in polyethylene terephthalate (PET) substrates from graphene oxide suspensions. In an environmentally friendly approach, the reduction process was carried out in a green chemistry fashion way using ascorbic acid as reduction agent. Graphene oxide was synthesized by modified Hummers' method and the coating was realized in a homemade dip-coating process. Films with light transmittance as high as 99% and surface resistance in the order of MΩ/sq were obtained with graphene oxide contents as low as 0.5 wt%. The increase in graphene oxide contents produced films with surface resistance as low as 13 kΩ/sq. These are very interesting results that allows these films to be considered for application in electromagnetic shielding and electrostatic dissipation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.