Psittaciform birds exhibit novelties in jaw bone structure and musculature that are associated with strong bite forces. These features include an ossified arcus suborbitalis and the muscles ethmomandibularis and pseudomasseter. We analyse the jaw musculature of the monk parakeet (Myiopsitta monachus) to enable future studies aimed at understanding craniofacial development, morphology, function and evolution. We estimate bite force based on muscle dissections, physiological cross‐sectional area and skull biomechanical modelling. We also compare our results with available data for other birds and traced the evolutionary origin of the three novel diagnostic traits. Our results indicate that, in Myiopsitta, (i) the arcus suborbitalis is absent and the orbit is ventrally closed by an elongate processus orbitalis and a short ligamentum suborbitale; (ii) the ethmomandibularis muscle is a conspicuous muscle with two bellies, with its origin on the anterior portion of the septum interorbitale and insertion on the medial aspect of the mandible; (iii) the pseudomasseter muscle consists of some fibers arising from the m. adductor mandibulae externus superficialis, covering the lateral surface of the arcus jugalis and attaches by an aponeurotic sheet on the processus orbitalis; (iv) a well‐developed adductor mandibulae complex is present; (v) the bite force estimation relative to body mass is higher than that calculated for other non‐psittaciform species; and (vi) character evolution analysis revealed that the absence of the arcus suborbitalis and the presence of the m. pseudomassseter are the ancestral conditions, and mapping is inconclusive about presence of one or two bellies of the m. ethmomandibularis.
We describe the hindlimb myology of Milvago chimango. This member of the Falconidae: Polyborinae is a generalist and opportunist that can jump and run down prey on the ground, unlike Falconinae that hunt birds in flight and kill them by striking with its talons. Due to differences in the locomotion habits between the subfamilies, we hypothesized differences in their hindlimb myology. Gross dissections showed that the myology of M. chimango is concordant with that described of other falconids, except for the following differences: the m. flexor cruris medialis has one belly with a longitudinal division; the m. iliotibialis lateralis does not have a connection with the m. iliofibularis; the m. fibularis longus is strongly aponeurotic; the m. tibialis cranialis lacks an accessory tendons and the m. flexor hallucis longus has one place of origin, instead of two. The presence of the m. flexor cruris lateralis can be distinguished as it has been described absent for the Falconidae. We associated its presence with the predominant terrestrial habit of the M. chimango. Each muscle dissected was weighed and the relationship between flexors and extensors at each joint was assessed. The extensor muscles predominated in all joints in M. chimango. Among the flexors, the m. flexor hallucis longus was the heaviest, which could be related to the importance of the use of its talons to obtain food.
We studied the hindlimb myology of the monk parakeet (Myiopsitta monachus). Like all parrots, it has zygodactyl feet enabling perching, climbing, hanging, moving easily among trees, and handling food. Muscles were described and weighed, and physiological cross-sectional area (PCSA) of four flexors and one extensor was calculated. In comparison to other muscles, the M. tibialis cranialis and the M. fibularis brevis show increased development and high PCSA values, and therefore, large potential force production. Also, a large proportion of muscle mass was involved in flexing the digits. We hypothesize that these muscle traits are associated with the arboreal locomotion and food manipulation habits. In the monk parakeet, the M. extensor digitorum longus sends a branch to the hallux, and the connection between the M. flexor digitorum longus and the M. flexor hallucis longus is type I (Gadow's classification). We reaffirm the presence of the M. ambiens as a plesiomorphic condition that disappears in most members of the order. Among Psittaciformes, the M. fibularis brevis is stronger and the M. fibularis weaker in arboreal species than in basal terrestrial ones (e.g., Strigops).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.