Male seminal fluid proteins are known to affect female reproductive behavior and physiology by reducing mating receptivity and by increasing egg production rates. Such substances are also though to increase the competitive fertilization success of males, but the empirical foundation for this tenet is restricted. Here, we examined the effects of injections of size-fractioned protein extracts from male reproductive organs on both male competitive fertilization success (i.e., P2 in double mating experiments) and female reproduction in the seed beetle Callosobruchus maculatus. We found that extracts of male seminal vesicles and ejaculatory ducts increased competitive fertilization success when males mated with females 1 day after the females’ initial mating, while extracts from accessory glands and testes increased competitive fertilization success when males mated with females 2 days after the females’ initial mating. Moreover, different size fractions of seminal fluid proteins had distinct and partly antagonistic effects on male competitive fertilization success. Collectively, our experiments show that several different seminal fluid proteins, deriving from different parts in the male reproductive tract and of different molecular weight, affect male competitive fertilization success in C. maculatus. Our results highlight the diverse effects of seminal fluid proteins and show that the function of such proteins can be contingent upon female mating status. We also document effects of different size fractions on female mating receptivity and egg laying rates, which can serve as a basis for future efforts to identify the molecular identity of seminal fluid proteins and their function in this model species.
BackgroundMale seminal fluid proteins (SFPs), transferred to females during mating, are important reproductive proteins that have multifarious effects on female reproductive physiology and that often show remarkably rapid and divergent evolution. Inferences regarding natural selection on SFPs are based primarily on interspecific comparative studies, and our understanding of natural within-species variation in SFPs and whether this relates to reproductive phenotypes is very limited. Here, we introduce an empirical strategy to study intraspecific variation in and selection upon the seminal fluid proteome. We then apply this in a study of 15 distinct populations of the seed beetle Callosobruchus maculatus.ResultsPhenotypic assays of these populations showed significant differences in reproductive phenotypes (male success in sperm competition and male ability to stimulate female fecundity). A quantitative proteomic study of replicated samples of male accessory glands revealed a large number of potential SFPs, of which ≥127 were found to be transferred to females at mating. Moreover, population divergence in relative SFP abundance across populations was large and remarkably multidimensional. Most importantly, variation in male SFP abundance across populations was associated with male sperm competition success and male ability to stimulate female egg production.ConclusionsOur study provides the first direct evidence for postmating sexual selection on standing intraspecific variation in SFP abundance and the pattern of divergence across populations in the seminal fluid proteome match the pattern predicted by the postmating sexual selection paradigm for SFP evolution. Our findings provide novel support for the hypothesis that sexual selection on SFPs is an important engine of incipient speciation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0547-2) contains supplementary material, which is available to authorized users.
Mitochondria are involved in ageing and their function requires coordinated action of both mitochondrial and nuclear genes. Epistasis between the two genomes can influence lifespan but whether this also holds for reproductive senescence is unclear. Maternal inheritance of mitochondria predicts sex differences in the efficacy of selection on mitonuclear genotypes that should result in differences between females and males in mitochondrial genetic effects. Mitonuclear genotype of a focal individual may also indirectly affect trait expression in the mating partner. We tested these predictions in the seed beetle Callosobruchus maculatus, using introgression lines harbouring distinct mitonuclear genotypes. Our results reveal both direct and indirect sexspecific effects of mitonuclear epistasis on reproductive ageing. Females harbouring coadapted mitonuclear genotypes showed higher lifetime fecundity due to slower senescence relative to novel mitonuclear combinations. We found no evidence for mitonuclear coadaptation in males. Mitonuclear epistasis not only affected age-specific ejaculate weight, but also influenced male age-dependent indirect effects on traits expressed by their female partners (fecundity, egg size, longevity). These results demonstrate important consequences of sex-specific mitonuclear epistasis for both mating partners, consistent with a role for mitonuclear genetic constraints upon sex-specific adaptive evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.