Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided.
Diabetes Mellitus is a severe, chronic disease that occurs when blood glucose levels rise above certain limits. Over the last years, machine and deep learning techniques have been used to predict diabetes and its complications. However, researchers and developers still face two main challenges when building type 2 diabetes predictive models. First, there is considerable heterogeneity in previous studies regarding techniques used, making it challenging to identify the optimal one. Second, there is a lack of transparency about the features used in the models, which reduces their interpretability. This systematic review aimed at providing answers to the above challenges. The review followed the PRISMA methodology primarily, enriched with the one proposed by Keele and Durham Universities. Ninety studies were included, and the type of model, complementary techniques, dataset, and performance parameters reported were extracted. Eighteen different types of models were compared, with tree-based algorithms showing top performances. Deep Neural Networks proved suboptimal, despite their ability to deal with big and dirty data. Balancing data and feature selection techniques proved helpful to increase the model’s efficiency. Models trained on tidy datasets achieved almost perfect models.
The challenge of providing quality healthcare to underserved populations in low- and middle-income countries (LMICs) has attracted increasing attention from information and communication technology (ICT) professionals interested in providing societal impact through their work. Sana is an organisation hosted at the Institute for Medical Engineering and Science at the Massachusetts Institute of Technology that was established out of this interest. Over the past several years, Sana has developed a model of organising mobile health bootcamp and hackathon events in LMICs with the goal of encouraging increased collaboration between ICT and medical professionals and leveraging the growing prevalence of cellphones to provide health solutions in resource limited settings. Most recently, these events have been based in Colombia, Uganda, Greece and Mexico. The lessons learned from these events can provide a framework for others working to create sustainable health solutions in the developing world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.