It is unknown if adult human skeletal muscle has an epigenetic memory of earlier encounters with growth. We report, for the first time in humans, genome-wide DNA methylation (850,000 CpGs) and gene expression analysis after muscle hypertrophy (loading), return of muscle mass to baseline (unloading), followed by later hypertrophy (reloading). We discovered increased frequency of hypomethylation across the genome after reloading (18,816 CpGs) versus earlier loading (9,153 CpG sites). We also identified AXIN1, GRIK2, CAMK4, TRAF1 as hypomethylated genes with enhanced expression after loading that maintained their hypomethylated status even during unloading where muscle mass returned to control levels, indicating a memory of these genes methylation signatures following earlier hypertrophy. Further, UBR5, RPL35a, HEG1, PLA2G16, SETD3 displayed hypomethylation and enhanced gene expression following loading, and demonstrated the largest increases in hypomethylation, gene expression and muscle mass after later reloading, indicating an epigenetic memory in these genes. Finally, genes; GRIK2, TRAF1, BICC1, STAG1 were epigenetically sensitive to acute exercise demonstrating hypomethylation after a single bout of resistance exercise that was maintained 22 weeks later with the largest increase in gene expression and muscle mass after reloading. Overall, we identify an important epigenetic role for a number of largely unstudied genes in muscle hypertrophy/memory.
DNA methylation is an important epigenetic modification that can regulate gene expression following environmental encounters without changes to the genetic code. Using Infinium MethylationEPIC BeadChip Arrays (850,000 CpG sites) we analysed for the first time, DNA isolated from untrained human skeletal muscle biopsies (vastus lateralis) at baseline (rest) and immediately following an acute (single) bout of resistance exercise. In the same participants, we also analysed the methylome following a period of muscle growth (hypertrophy) evoked via chronic (repeated bouts-3 sessions/wk) resistance exercise (RE) (training) over 7-weeks, followed by complete exercise cessation for 7-weeks returning muscle back to baseline levels (detraining), and finally followed by a subsequent 7-week period of RE-induced hypertrophy (retraining). These valuable methylome data sets described in the present manuscript and deposited in an open-access repository can now be shared and re-used to enable the identification of epigenetically regulated genes/networks that are modified after acute anabolic stimuli and hypertrophy, and further investigate the phenomenon of epigenetic memory in skeletal muscle.
Key points Obesity and sedentary behaviour are associated with capillary rarefaction and impaired muscle microvascular vasoreactivity, due to reduced nitric oxide bioavailability. Low‐volume high‐intensity interval training (HIT) is a time‐efficient alternative to traditional moderate‐intensity continuous training (MICT), but its effect on the muscle microvasculature has not been studied. The applicability of current laboratory‐ and gym‐based HIT protocols for obese individuals with low fitness and mobility has been disputed by public health experts, who cite the strenuous nature and complex protocols as major barriers. Therefore, we developed a virtually supervised HIT protocol targeting this group that can be performed at home without equipment (Home‐HIT). This study is the first to show that 12 weeks of virtually supervised Home‐HIT in obese individuals with elevated cardiovascular disease risk leads to similar increases in capillarisation and eNOS/NAD(P)Hoxidase protein ratio within the muscle microvascular endothelium as virtually supervised home‐based MICT and laboratory‐based HIT, while reducing many of the major barriers to exercise. Abstract This study investigated the effect of a novel virtually supervised home‐based high‐intensity interval training (HIT) (Home‐HIT) intervention in obese individuals with elevated cardiovascular disease (CVD) risk on capillarisation and muscle microvascular eNOS/NAD(P)Hoxidase ratio. Thirty‐two adults with elevated CVD risk (age 36 ± 10 years; body mass index 34.3 ± 5 kg m−2; V̇O2 peak 24.6 ± 5.7 ml kg min−1), completed one of three 12‐week training programmes: Home‐HIT (n = 9), laboratory‐based supervised HIT (Lab‐HIT; n = 10) or virtually supervised home‐based moderate‐intensity continuous training (Home‐MICT; n = 13). Muscle biopsies were taken before and after training to assess changes in vascular enzymes, capillarisation, mitochondrial density, intramuscular triglyceride content and GLUT4 protein expression using quantitative immunofluorescence microscopy. Training increased V̇O2 peak (P < 0.001), whole‐body insulin sensitivity (P = 0.033) and flow‐mediated dilatation (P < 0.001), while aortic pulse wave velocity decreased (P < 0.001) in all three groups. Immunofluorescence microscopy revealed comparable increases in total eNOS content in terminal arterioles and capillaries (P < 0.001) in the three conditions. There was no change in eNOS ser1177 phosphorylation (arterioles P = 0.802; capillaries P = 0.311), but eNOS ser1177/eNOS content ratio decreased significantly following training in arterioles and capillaries (P < 0.001). Training decreased NOX2 content (arterioles P < 0.001; capillaries P < 0.001), but there was no change in p47phox content (arterioles P = 0.101; capillaries P = 0.345). All measures of capillarisation increased (P < 0.05). There were no between‐group differences. Despite having no direct supervision during exercise, virtually supervised Home‐HIT resulted in comparable structural and endothelial enzymatic changes in the skeletal muscle mic...
This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres.
PurposeNew Zealand blackcurrant (NZBC) extract has previously been shown to increase fat oxidation during prolonged exercise, but this observation is limited to males. We examined whether NZBC intake also increases fat oxidation during prolonged exercise in females, and whether this was related to greater concentrations of circulating fatty acids.MethodsIn a randomised, crossover, double-blind design, 16 endurance-trained females (age: 28 ± 8 years, BMI: 21.3 ± 2.1 kg·m−2, VO2max: 43.7 ± 1.1 ml·kg−1·min−1) ingested 600 mg·day−1 NZBC extract (CurraNZ™) or placebo (600 mg·day−1 microcrystalline cellulose) for 7 days. On day 7, participants performed 120 min cycling at 65% VO2max, using online expired air sampling with blood samples collected at baseline and at 15 min intervals throughout exercise for analysis of glucose, NEFA and glycerol.ResultsNZBC extract increased mean fat oxidation by 27% during 120 min moderate-intensity cycling compared to placebo (P = 0.042), and mean carbohydrate oxidation tended to be lower (P = 0.063). Pre-exercise, plasma NEFA (P = 0.034) and glycerol (P = 0.051) concentrations were greater following NZBC intake, although there was no difference between conditions in the exercise-induced increase in plasma NEFA and glycerol concentrations (P > 0.05). Mean fat oxidation during exercise was moderately associated with pre-exercise plasma NEFA concentrations (r = 0.45, P = 0.016).ConclusionsIntake of NZBC extract for 7 days elevated resting concentrations of plasma NEFA and glycerol, indicative of higher lipolytic rates, and this may underpin the observed increase in fat oxidation during prolonged cycling in endurance-trained females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.