Coinfection of HIV-1 patients with Plasmodium falciparum, the etiological agent of malaria, results in a raise of viral load and an acceleration of disease progression. The primary objective of this study was to investigate whether the malarial pigment hemozoin (HZ), a heme by-product of hemoglobin digestion by malaria parasites, can affect HIV-1 transmission by monocytes-derived dendritic cells (DCs) to CD4+ T cells when HZ is initially internalized in monocytes before their differentiation in DCs. We demonstrate in this study that HZ treatment during the differentiation process induces an intermediate maturation phenotype when compared with immature and fully mature DCs. Furthermore, the DC-mediated transfer of HIV-1 is enhanced in presence of HZ, a phenomenon that may be linked with the capacity of HZ-loaded cells to interact and activate CD4+ T cells. Altogether our findings suggest a new mechanism that could partially explain the increased HIV-1 virus production during a coinfection with P. falciparum. Understanding the multifaceted interactions between P. falciparum and HIV-1 is an important challenge that could lead to the development of new treatment strategies.
Few studies have investigated the pathophysiologic mechanisms responsible for what seems to be a possible interaction between Plasmodium falciparum, the causative agent of malaria, and HIV-1 in dually infected patients. It has been shown that Plasmodium parasites detoxify heme molecules into a pigment called hemozoin (HZ), which can significantly modulate the immune system. The primary objective of this study was to determine whether exposure of human primary monocyte-derived macrophages (MDMs) to the malaria pigment influences the process of HIV-1 infection. We report here that HIV-1 replication is significantly diminished in HZ-loaded MDMs. The HZ-mediated reduction in virus replication is due to a block at a step in the virus life cycle occurring between the completion of full-length reverse transcripts and integration of viral DNA within the host chromosome. Understanding the pathological mechanisms involved in P. falciparum and HIV-1 co-infection is of high importance because of possible therapeutic ramifications.
SummaryTogether, Plasmodium falciparum (P. falciparum) and HIV-1 infections cause more than four million deaths a year. There is still limited information about the putative impact of the malaria pigment hemozoin (HZ) on the dissemination of HIV-1. As so, we propose a premise where HZ present in human dendritic cells (DCs) could modulate HIV-1 transfer to CD4 + T cells. We report here that HZ promotes transmission of HIV-1 by immature monocyte-derived DCs (iMDDCs). Moreover, we noted that in the presence of HZ, iMDDCs were less permissive to productive HIV-1 infection. The HZ-dependent modulation of the interaction between iMDDCs and HIV-1 seems to be partly due to a decreased expression of CCR5 and also to the induction of a more mature phenotype as proven by microscopy and flow cytometry analyses. Therefore, exposure of iMDDCs to malaria pigments provokes their maturation rendering them more potent to trans-infect CD4 + T cells with HIV-1.
CD28 is constitutively expressed on CD4(+) cells, but its homologue CD152 is only weakly expressed after cell activation. To determine whether these 2 costimulatory molecules can be inserted into human immunodeficiency virus type 1 (HIV-1), virus was produced in CD28- and CD152-expressing Jurkat-derived cells. Both molecules were efficiently acquired by virions. Virus attachment and infectivity were more affected by CD152 than by CD28. Given that CD28/CD152-CD80/CD86 interactions play a dominant role in antigen presentation, it can thus be proposed that the association between virus-anchored host CD28/CD152 and cell-surface CD80/CD86 on target cells might have consequences for the transmission and pathogenesis of HIV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.