Highlights d Machine-learning analysis of CyTOF data segregates COVID-19 + and COVID-19 À ARDS d CD169 + S100A9 + monocytes differentiate COVID-19 ARDS from other ARDS d Monocyte compartment alterations correlate with other immune subset modifications d CD14 + HLA-DR low and CD14 lo CD16 + monocytes are markers of adverse COVID-19 evolution
Multiple sclerosis (MS) is an immune-driven demyelinating disease of the central nervous system. Immune cell features are particularly promising as predictive biomarkers due to their central role in the pathogenesis but also as drug targets, even if nowadays, they have no impact in clinical practice. Recently, high-resolution approaches, such as mass cytometry (CyTOF), helped to better understand the diversity and functions of the immune system. In this study, we performed an exploratory analysis of blood immune response profiles in healthy controls and MS patients sampled at their first neurological relapse, using two large CyTOF panels including 62 markers exploring myeloid and lymphoid cells. An increased abundance of both a T-bet-expressing B cell subset and a CD206+ classical monocyte subset was detected in the blood of early MS patients. Moreover, T-bet-expressing B cells tended to be enriched in aggressive MS patients. This study provides new insights into understanding the pathophysiology of MS and the identification of immunological biomarkers. Further studies will be required to validate these results and to determine the exact role of the identified clusters in neuroinflammation.
Absolute count of circulating monocytes has been proposed as an independent prognostic factor in diffuse large B-cell lymphoma (DLBCL). However, monocyte nomenclature includes various subsets with pro-, anti-inflammatory, or suppressive functions, and their clinical relevance in DLBCL has been poorly explored. Herein, we broadly assessed circulating monocyte heterogeneity in 91 DLBCL patients. Classical- (cMO, CD14pos CD16neg) and intermediate- (iMO, CD14pos CD16pos) monocytes accumulated in DLBCL peripheral blood and exhibited an inflammatory phenotype. On the opposite, nonclassical monocytes (ncMOSlanpos, CD14low CD16pos Slanneg and ncMOSlanneg, CD14low CD16pos, Slanneg) were decreased in peripheral blood. Tumor-conditioned monocytes presented similarities with ncMO phenotype from DLBCL and were prone to migrate in response to CCL5 and CXCL12, and presented similarities with DLBCL-infiltrated myeloid cells, as defined by mass cytometry. Finally, we demonstrated the adverse value of an accumulation of nonclassical monocytes in 2 independent cohorts of DLBCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.