While several studies have suggested that bacterium-phytoplankton interactions have the potential to dramatically influence harmful algal bloom dynamics, little is known about how bacteria and phytoplankton communities interact at the species composition level. The objective of the current study was to determine whether there are specific associations between diverse phytoplankton and the bacteria that co-occur with them. We determined the phylogenetic diversity of bacterial assemblages associated with 10 Alexandrium strains and representatives of the major taxonomic groups of phytoplankton in the Gulf of Maine. For this analysis we chose xenic phytoplankton cultures that (i) represented a broad taxonomic range, (ii) represented a broad geographic range for Alexandrium spp. isolates, (iii) grew under similar cultivation conditions, (iv) had a minimal length of time since the original isolation, and (v) had been isolated from a vegetative phytoplankton cell. 16S rRNA gene fragments of most Bacteria were amplified from DNA extracted from cultures and were analyzed by denaturing gradient gel electrophoresis and sequencing. A greater number of bacterial species were shared by different Alexandrium cultures, regardless of the geographic origin, than by Alexandrium species and nontoxic phytoplankton from the Gulf of Maine. In particular, members of the Roseobacter clade showed a higher degree of association with Alexandrium than with other bacterial groups, and many sequences matched sequences reported to be associated with other toxic dinoflagellates. These results provide evidence for specificity in bacterium-phytoplankton associations.
Bacteria and phytoplankton dynamics are thought to be closely linked in coastal marine environments, with correlations frequently observed between bacterial and phytoplankton biomass. In contrast, little is known about how these communities interact with each other at the species composition level. The purpose of the current study was to analyze bacterial community dynamics in a productive, coastal ecosystem and to determine whether they were related to phytoplankton community dynamics. Near-surface seawater samples were collected in February, May, July, and September 2000 from several stations in the Bay of Fundy. Savin et al. (M.C. Savin et al., Microb Ecol 48: 51-65) analyzed the phytoplankton community in simultaneously collected samples. The attached and free-living bacterial communities were collected by successive filtration onto 5 microm and 0.22 microm pore-size filters, respectively. DNA was extracted from filters and bacterial 16S rRNA gene fragments were amplified and analyzed by denaturing gradient gel electrophoresis (DGGE). DGGE revealed that diversity and temporal variability were lower in the free-living than the attached bacterial community. Both attached and free-living communities were dominated by members of the Roseobacter and Cytophaga groups. Correspondence analysis (CA) ordination diagrams showed similar patterns for the phytoplankton and attached bacterial communities, indicating that shifts in the species composition of these communities were linked. Similarly, canonical CA revealed that the diversity, abundance, and percentage of diatoms in the phytoplankton community accounted for a significant amount of the variability in the attached bacterial community composition. In contrast, ordination analyses did not reveal an association between free-living bacteria and phytoplankton. These results suggest that there are specific interactions between phytoplankton and the bacteria attached to them, and that these interactions influence the composition of both communities.
The potential for anaerobic benzene oxidation in the Fe(III)reduction zone of petroleum-contaminated aquifers was evaluated. Sediments were incubated under strict anaerobic conditions without any amendments in order to simulate in situ conditions. [ 14 C]Benzene was not oxidized to 14 CO 2 at most sites examined, which is consistent with previous studies that have found that benzene tends to persist in unamended, anaerobic aquifer materials and/or long periods of time are required in order to adapt the microbial population for benzene degradation. However, at one site located in Bemidji, MN, [ 14 C]benzene was oxidized to 14 CO 2 in unamended sediments without an apparent lag, suggesting that benzene was anaerobically degraded in situ. Benzene was not significantly oxidized in sediments from nearby Fe(III)-reducing sites nor in sediments collected from an uncontaminated background site in the same aquifer. Culturing and 16S rRNA-based molecular studies of the Bemidji aquifer demonstrated that while all sites contained similar numbers of Fe(III)-reducing microorganisms closely related to Geothrix fermentens, the site at which anaerobic benzene degradation was observed was greatly enriched with microorganisms in the family Geobacteraceae. This study provides the first data consistent with in situ anaerobic oxidation of benzene to carbon dioxide in the Fe(III)reducing zone of a petroleum-contaminated aquifer and suggests that comparative studies on the size of the Geobacteraceae community in petroleum-contaminated aquifers might aid in the location of zones in which benzene degradation coupled to Fe(III) reduction is taking place.
Microbial community composition associated with benzene oxidation under in situ Fe(III)-reducing conditions in a petroleum-contaminated aquifer located in Bemidji, Minn., was investigated. Community structure associated with benzene degradation was compared to sediment communities that did not anaerobically oxidize benzene which were obtained from two adjacent Fe(III)-reducing sites and from methanogenic and uncontaminated zones. Denaturing gradient gel electrophoresis of 16S rDNA sequences amplified with bacterial orGeobacteraceae-specific primers indicated significant differences in the composition of the microbial communities at the different sites. Most notable was a selective enrichment of microorganisms in the Geobacter cluster seen in the benzene-degrading sediments. This finding was in accordance with phospholipid fatty acid analysis and most-probable-number–PCR enumeration, which indicated that members of the familyGeobacteraceae were more numerous in these sediments. A benzene-oxidizing Fe(III)-reducing enrichment culture was established from benzene-degrading sediments and contained an organism closely related to the uncultivated Geobacter spp. This genus contains the only known organisms that can oxidize aromatic compounds with the reduction of Fe(III). Sequences closely related to the Fe(III) reducer Geothrix fermentans and the aerobe Variovorax paradoxus were also amplified from the benzene-degrading enrichment and were present in the benzene-degrading sediments. However, neither G. fermentans nor V. paradoxusis known to oxidize aromatic compounds with the reduction of Fe(III), and there was no apparent enrichment of these organisms in the benzene-degrading sediments. These results suggest thatGeobacter spp. play an important role in the anaerobic oxidation of benzene in the Bemidji aquifer and that molecular community analysis may be a powerful tool for predicting a site’s capacity for anaerobic benzene degradation.
[1] Laboratory incubations, gas and solute analyses, and stable isotope methods were used to investigate the pathway of methanogenesis in 25 wetland peats of varying vegetation composition along a latitudinal gradient in Alaska. Sites were divided into gross vegetation classes indicative of tropic status: mostly Sphagnum (class 1); Sphagnum plus vascular plants (i.e., Carex) (class 2); mostly vascular plants, but still containing Sphagnum (class 3), and; sites dominated by vascular plants with no visible Sphagnum species (class 4). The magnitude of CO 2 , acetate and CH 4 as end products of anaerobic metabolism varied greatly, but ratios of end product formation indicative of differences in the pathway of C flow and methanogenesis corresponded with vegetation classes, especially at the extremes, e.g., acetate-C accounted for 67% of total C production in Sphagnum-rich sites (class 1) decreasing to 13% in sites devoid of sphagna (class 4). Conversely, CH 4 comprised only 0.4% of products in class 1 sites, but increased to 14% in class 4. Total respiration rates (sum of all three products) varied by only a factor of $2 among vegetation classes (200-440 nmol ml À1 day À1 ), but rates differed greatly if acetate formation was not included suggesting that belowground C cycling can be much more rapid than previously thought. Apparent fractionation factors (a = d 13 C DIC + 1000/d 13 C CH4 + 1000) that estimate methanogenic pathway, i.e., the relative contribution of CO 2 reduction or acetate as precursors of methane, varied from $1.030 to $1.080 and agreed with incubation end product ratios, underscoring the importance of the presence or absence of vascular plants and Sphagnum mosses in affecting the pathway of anaerobic C flow. We contend that methanogenesis in general, including CO 2 reduction, is impeded in northern wetlands compared to the production of other C compounds and that its importance decreases with oligotrophy. The connection with vegetation suggests that climate change scenarios leading to increases in vascular plant cover in northern wetlands may shift methanogenic pathways toward increased acetotrophy and increased methane formation, which is a positive feedback on warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.