Asian hornets (Vespa velutina) are voracious predators of bees, and are the latest emerging threat to managed and wild pollinator populations in Europe. To prevent establishment or reduce the rate of spread of V. velutina, early detection and destruction of nests is considered the only option. Detection is difficult as their nests are well hidden and flying hornets are difficult to follow over long distances. We address this challenge by tracking individual V. velutina workers flying back to their nests using radio telemetry for the first time, finding five previously undiscovered nests, up to 1.33 km from hornet release points. Hornets can fly with 0.28 g tags if the tag:hornet ratio is less than 0.8. This method offers a step-change in options to tackle the spread of this invader, providing an efficient means of finding V. velutina nests in complex environments to manage this emerging threat to pollinators.
Recent studies have focused on the role of behavior in biological invasions. Individuals may differ consistently in time for several behavioral traits (personality) which covary (behavioral syndrome) resulting in different behavioral types, some of them favoring invasion. Social hymenopterans have a strong potential to be invaders and their success depends primarily on the foundresses' ability to found viable colonies. They are expected to be active, explorative and bold for optimally establishing their nest. In Europe, 2 hornet species coexist: the native Vespa crabro and the invasive Vespa velutina. These 2 species may compete for nesting sites and we suggest that the initial success of V. velutina has been favored by its behavior in outperforming V. crabro for the traits involved in nest initiation. Here, we (i) defined the personality of V. crabro and V. velutina, (ii) tested for the existence of behavioral syndrome in these species, and (iii) compared their performances using an open-field test. Our results show that V. crabro foundresses behave consistently but not V. velutina; this lack of consistency being mainly due to reduced variance among individuals. This result questions the possibility of detecting consistent behavioral differences in species having recently undergone a strong bottleneck. Both species exhibit the same correlations between activity, boldness and exploration and V. velutina clearly outperforms V. crabro for all traits. Our results suggest that activity, boldness, and exploration are implicated in both hornet nest initiation and invasion process which contributed to explain why social hymenopterans are so successful at colonization.
In social insects, the activity rhythm of foragers and their action range determinate the activity of the colony. In vespids, which are mostly predators, the foraging range of workers determines their maximum predation pressure round the nest. One of these species, Vespa velutina, a recently invasive species introduced into Europe, exerts a strong predation on honeybees at the hive. Therefore, the definition of its activity rhythm and spatial range of predation is of primary importance. Using radio frequency identification tags (RFID), two experiments were carried out to (a) determine their return ability (called homing) in releasing 318 individuals at different distance from their colony and (b) monitor their foraging activity rhythm and the duration of their flights based on 71 individuals followed 24 hr/24 during 2 months. The homing ability of V. velutina was evaluated to be up to 5,000 m and was not affected by the cardinal orientation of release point. The lag time to return to the nest increased with the distance of release. Most of the flight activity took place between 07:00 a.m. and 08:00 p.m., hornets doing principally short flights of less than an hour. Foraging range was thus estimated ca. 1,000 m around the nest. This study of V. velutina assisted by RFID tags provides for the first time a baseline for its potential foraging distance that increase our knowledge of this species to (a) refine more accurately models for risk assessment and (b) define security perimeter for early detection of predation on invasion front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.