With the advent of very large scale parallel computers, it has become more and more important to also use the time direction for parallelization when solving evolution problems. While there are many successful algorithms for diffusive problems, only some of them are also effective for hyperbolic problems. We present here a mathematical analysis of a new method based on the diagonalization of the time stepping matrix proposed by Maday and Rønquist in 2007. Like many time-parallelization methods, at first this does not seem to be a very promising approach: the matrix is essentially triangular, or, for equidistant time steps, actually a Jordan block, and thus not diagonalizable. If one chooses however different time steps, diagonalization is possible, and one has to trade off between the accuracy due to necessarily having different time steps, and numerical errors in the diagonalization process of these almost nondiagonalizable matrices. We present for the first time such a diagonalization technique for the Newmark scheme for solving wave equations, and derive a mathematically rigorous optimization strategy for the choice of the parameters in the special case when the Newmark scheme becomes Crank-Nicolson. Our analysis shows that small to medium scale time parallelization is possible with this approach. We illustrate our results with numerical experiments for model wave equations in various dimensions and also an industrial test case for the elasticity equations with variable coefficients.
Abstract. In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems in time and space. The whole process is easily tuned to underlying hardware requirements.Mathematics Subject Classification. 65M55, 65Y05.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.