Modifying the chemistry of injection water yields improved wettability behavior on carbonate rock surfaces. Previous work has focused on demonstrating the effect of modified brine formulation on particular carbonate samples. Here the results of a more general screening study consisting of Amott spontaneous imbibition experiments on the samples from oil-bearing zones and from outcrops of different carbonate formations are reported. Tertiary incremental oil production due to increased water-wetness was observed upon transition to brine of lower ionic strength. Additional oil recovery from the spontaneous imbibition tests ranged from 4 to 20% of OIIP (Oil Initially In Place), reflecting a large variability in the response and indicating a high complexity of the mechanism(s). Consistent with numerous published reports, Stevns Klint outcrop chalk samples were a clear exception and exhibited increased oil recovery with increasing sulfate ion concentration. These did not respond to lowering the salinity of the imbibing brine. Tertiary oil recovery from samples containing evaporites occurred simultaneously with dissolution of salt minerals, as evident from brine analysis. However, incremental oil recovery in the same range was measured for samples without evaporites but from the same geological formation. Hence, mineral dissolution as a mechanism for enhanced oil recovery could not be confirmed. The results show that injection of low salinity brine into carbonate reservoirs has potential as an EOR technology. However, additional research is needed to improve the understanding of the underlying chemical and physical mechanisms and improve a priori predictability.
The structures of a dimeric mutant of the Lac repressor DNA-binding domain complexed with the auxiliary operators O2 and O3 have been determined using NMR spectroscopy and compared to the structures of the previously determined Lac-O1 and Lac-nonoperator complexes. Structural analysis of the Lac-O1 and Lac-O2 complexes shows highly similar structures with very similar numbers of specific and nonspecific contacts, in agreement with similar affinities for these two operators. The left monomer of the Lac repressor in the Lac-O3 complex retains most of these specific contacts. However, in the right half-site of the O3 operator, there is a significant loss of protein-DNA contacts, explaining the low affinity of the Lac repressor for the O3 operator. The binding mode in the right half-site resembles that of the nonspecific complex. In contrast to the Lac-nonoperator DNA complex where no hinge helices are formed, the stability of the hinge helices in the weak Lac-O3 complex is the same as in the Lac-O1 and Lac-O2 complexes, as judged from the results of hydrogen/deuterium experiments.
Improved oil recovery by low salinity waterflooding (LSF) represents an attractive emerging oil recovery technology, as it is relatively easy to implement and low-cost compared to other Improved and Enhanced Oil Recovery (IOR and EOR, respectively) processes. Even though LSF leads to extra oil recovery in most laboratory experiments and some promising data from the field have been presented, the mechanism underlying LSF is still unclear. Therefore it is difficult to predict a favorable performance of LSF in one field a priori, while dismissing others. This paper describes a series of spontaneous imbibition experiments on Berea outcrop core plugs, and some reservoir rock core plugs, that were designed to determine the impact of formation water, imbibing water and crude oil composition on wettability and on wettability modification by LSF. The data presented in this paper lead us to conclude that: Spontaneous imbibition experiments with formation brine and low salinity brine executed on Berea outcrop material aged with a crude oil show excellent reproducibility;An increasing concentration of divalent cations in the formation brine makes a Crude Oil/Brine/Rock system more oil-wet;The extent of wettability modification towards more oil-wet upon aging also depends on the types of cations in the formation brine;Improved oil recovery by exposure of the aged plugs to NaCl brines occurred when the imbibing phase was either higher or lower in salinity than the formation brine;Aging of the same brine/rock system with different crudes having diverse physico-chemical properties led to:○A spread in wettabilities after aging○A crude oil-dependent low salinity effect These results are discussed within the context of several mechanisms that have been put forward previously as an explanation for the low salinity effect.
The cyclic peptides c-(LSETTl) and c-(RTLPFS) are of potential clinical interest--they stimulate neurite outgrowth in a way that is similar to the effects of the HNK-1 (human natural killer cell-1) antigenic carbohydrate chains, which are terminated by 3'-sulfated glucuronic acid attached to an N-acetyllactosamine unit. To investigate the structure-activity relationships of the ability of the cyclic peptides to mimic HNK-1 carbohydrates, conformational analysis and examination of hydrophobic and hydrophilic patterns were performed and compared with the characteristics of a synthetic HNK-1 trisaccharide derivative. Data obtained demonstrate that both the trisaccharide and the glycomimetic peptide c-(LSETTl) exhibit a similar relationship between their hydrophobic moieties and their negatively charged sites. However, the second cyclic glycomimetic peptide investigated here, c-(RTLPFS), has a positively charged group as a potential contact point due to its Arg residue. Therefore, we studied the amino acid composition of all known receptor structures in the Protein Data Bank that are in contact with uronic acid and/or sulfated glycans. Interactions of the HNK-1 trisaccharide, c-(LSETTl), and c-(RTLPFS) with a laminin fragment involved in HNK-1 carbohydrate binding (i.e., the 21mer peptide: KGVSSRSYVGCIKNLEISRST) were also analyzed. Because the structure of the HNK-1-binding laminin domain is not available in the Protein Data Bank, we used the HNK-1-binding 21mer peptide fragment of laminin for the construction of a model receptor that enabled us to compare the molecular interplay of the HNK-1 trisaccharide and the two cyclopeptides c-(LSETTl) and c-(RTLPFS) with a reliable receptor structure in considerable detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.